42 resultados para Eigenfunctions
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The problem of a spinless particle subject to a general mixing of vector and scalar inversely linear potentials in a two-dimensional world is analyzed. Exact bounded solutions are found in closed form by imposing boundary conditions on the eigenfunctions which ensure that the effective Hamiltonian is Hermitian for all the points of the space. The nonrelativistic limit of our results adds a new support to the conclusion that even-parity solutions to the nonrelativistic one-dimensional hydrogen atom do not exist. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
The Klein - Gordon and the Dirac equations with vector and scalar potentials are investigated under a more general condition, V-v = V-s + constant. These isospectral problems are solved in the case of squared trigonometric potential functions and bound states for either particles or antiparticles are found. The eigenvalues and eigenfunctions are discussed in some detail. It is revealed that a spin-0 particle is better localized than a spin-1/2 particle when they have the same mass and are subjected to the same potentials.
Resumo:
Three dimensional exactly solvable quantum potentials for which an extra term of form 1/r(2) has been added are shown to maintain their functional form which allows the construction of the Hamiltonian hierarchy and the determination of the spectra of eigenvalues and eigenfunctions within the Supersymmetric Quantum Mechanics formalism. For the specific cases of the harmonic oscillator and the Coulomb potentials, known as pseudo-harmonic oscillator and pseudo-Coulomb potentials, it is shown here that the inclusion of the new term corresponds to rescaling the angular momentum and it is responsible for maintaining their exact solvability.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Hulthen's potential admits analytical solutions for its energy eigenvalues and eigenfunctions corresponding to zero orbital angular momentum stales, but its non zero angular momentum states are not equally known. This work presents a vibrational-rotational analy sis of Hulthen's potential using hydrogenic eigenfunction bases, which may be of interest and useful to students of quantum mechanics at different stages.
Resumo:
By means of a well-established algebraic framework, Rogers-Szego functions associated with a circular geometry in the complex plane are introduced in the context of q-special functions, and their properties are discussed in detail. The eigenfunctions related to the coherent and phase states emerge from this formalism as infinite expansions of Rogers-Szego functions, the coefficients being determined through proper eigenvalue equations in each situation. Furthermore, a complementary study on the Robertson-Schrodinger and symmetrical uncertainty relations for the cosine, sine and nondeformed number operators is also conducted, corroborating, in this way, certain features of q-deformed coherent states.
Resumo:
We analyze the behavior of solutions of nonlinear elliptic equations with nonlinear boundary conditions of type partial derivative u/partial derivative n + g( x, u) = 0 when the boundary of the domain varies very rapidly. We show that the limit boundary condition is given by partial derivative u/partial derivative n+gamma(x) g(x, u) = 0, where gamma(x) is a factor related to the oscillations of the boundary at point x. For the case where we have a Lipschitz deformation of the boundary,. is a bounded function and we show the convergence of the solutions in H-1 and C-alpha norms and the convergence of the eigenvalues and eigenfunctions of the linearization around the solutions. If, moreover, a solution of the limit problem is hyperbolic, then we show that the perturbed equation has one and only one solution nearby.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
In this work we develop an approach to obtain analytical expressions for potentials in an impenetrable box. In this kind of system the expression has the advantage of being valid for arbitrary values of the box length, and respect the correct quantum limits. The similarity of this kind of problem with the quasi exactly solvable potentials is explored in order to accomplish our goals. Problems related to the break of symmetries and simultaneous eigenfunctions of commuting operators are discussed.
Resumo:
The general structure of the Hamiltonian hierarchy of the pseudo-Coulomb and pseudo-Harmonic potentials is constructed by the factorization method within the supersymmetric quantum mechanics (SQMS) formalism. The excited states and spectra of eigenfunctions of the potentials are obtained through the generation of the members of the hierarchy. It is shown that the extra centrifugal term added to the Coulomb and Harmonic potentials maintain their exact solvability.
Resumo:
The formalism of supersymmetric quantum mechanics provides us with the eigenfunctions to be used in the variational method to obtain the eigenvalues for the Hulthen potential.