5 resultados para Educational robotics

em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Severe disabled children have little chance of environmental and social exploration and discovery, and due this lack of interaction and independency, it may lead to an idea that they are unable to do anything by themselves. This idea is called learned helplessness and is very negative for the child cognitive development and social development as well. With this entire situation it is very likely that the self-steam and mood of this child. Trying to help these children on this situation, educational robotics can offer and aid, once it can give them a certain degree of independency in exploration of environment. The system developed in this work allows the child to transmit the commands to a robot. Sensors placed on the child's body can obtain information from head movement or muscle pulses to command the robot to carry the tasks. Also, this system can be used with a variety of robots, being necessary just a previous configuration. It is expected that, with the usage of this system, the disabled children have a better cognitive development and social interaction, balancing in a certain way, the negative effects of their disabilities. © 2011 IEEE.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Severely disabled children have little chance of environmental and social exploration and discovery. This lack of interaction and independency may lead to an idea that they are unable to do anything by themselves. In an attempt to help children in this situation, educational robotics can offer and aid, once it can provide them a certain degree of independency in the exploration of environment. The system developed in this work allows the child to transmit the commands to a robot through myoelectric and movement sensors. The sensors are placed on the child's body so they can obtain information from the body inclination and muscle contraction, thus allowing commanding, through a wireless communication, the mobile entertainment robot to carry out tasks such as play with objects and draw. In this paper, the details of the robot design and control architecture are presented and discussed. With this system, disabled children get a better cognitive development and social interaction, balancing in a certain way, the negative effects of their disabilities. © 2012 IEEE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper aims at describing an educational system for teaching and learning robotic systems. Multimedia resources were used to construct a virtual laboratory where users are able to use functionalities of a virtual robotic arm, by moving and clicking the mouse without caring about the detailed internal robot operation. Moreover through the multimedia system the user can interact with a real robot arm. The engineering students are the target public of the developed system. With its contents and interactive capabilities, it has been used as a support to the traditional face-to-face classes on the subject of robotics.. In the paper it is first introduced the metaphor of Virtual Laboratory used in the system. Next, it is described the Graphical and Multimedia Environment approach: an interactive graphic user interface with a 3D environment for simulation. Design and implementation issues of the real-time interactive multimedia learning system, which supports the W3C SMIL standard for presenting the real-time multimedia teaching material, are described. Finally, some preliminary conclusions and possible future works from this research are presented.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper describes the development of a multimedia educational system to teach and learn robotic systems. Multimedia resources have been used to build a virtual laboratory where users are able to utilize functions of a robotic arm, by moving and clicking the mouse without worrying about the detailed robot internal operation. The multimedia system is integrated with a real robotic arm, which was also developed at the university. Through robotic topic presentations and interactive capabilities provided by this system and its tools, students can devote themselves on the learning process just as they do in the traditional face-to-face classes. and the target public of this system are the engineering students themselves.