7 resultados para Ectotherm

em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lipolytic activity of fish (Hoplias malabaricus), toad (Bufo paracnemis), and snake (Philodryas patagoniensis) adipose tissue was investigated in vivo and in vitro. Catecholamines or glucagon did not affect the release of free fatty acids (FFA) by incubated fish and toad adipose tissue. Catecholamines also failed to activate snake adipose tissue lipolysis, which even decreased in the presence of epinephrine. However, glucagon stimulated both the lipolytic activity of reptilian tissue in vitro and the mobilization of FFA to plasma when administered to snakes in vivo. The release of FFA from incubated fish, amphibian, and reptilian adipose tissue increased markedly in the presence of cAMP or xanthine derivatives, inhibitors of phosphodiesterase. Forskolin or fluoride, activators of specific components of the adenylate cyclase system, strongly stimulated toad adipose tissue lipolysis. The data suggest that adipocyte triacylglycerol lipase of ectotherm vertebrates is activated by a cAMP-mediated phosphorylation and that the organization of the membrane-bound adenylate cyclase system is similar to that of mammals.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Broad nosed caiman are ectotherm sauropsids that naturally experience long fasting intervals. We have studied the postprandial responses by measuring oxygen consumption using respirometry, the size changes of the duodenum, the distal small intestine, and the liver, using repeated non-invasive ultrasonography, and by investigating structural changes on the level of tissues and cells by using light- and electron microscopy. The caimans showed the same rapid and reversible changes of organ size and identical histological features, down to the ultrastructure level, as previously described for other ectothermic sauropsids. We found a configuration change of the mucosa epithelium from pseudostratified during fasting to single layered during digestion, in association with hypertrophy of enterocytes by loading them with lipid droplets. Similar patterns were also found for the hepatocytes of the liver. By placing the results of our study in comparative relationship and by utilizing the phylogenetic bracket of crocodiles, birds and squamates, we suggest that the observed features are plesiomorphic characters of sauropsids. By extending the comparison to anurans, we suggest that morphological and physiological adjustments to feeding and fasting described here may have been a character of early tetrapods. In conclusion, we suggest that the ability to tolerate long fasting intervals and then swallow a single large meal as described for many sit-an-wait foraging sauropsids is a functional feature that was already present in ancestral tetrapods.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ectotherm antipredator behaviour might be strongly affected both by body temperature and size: when environmental temperatures do not favour maximal locomotor performance, large individuals may confront predators, whereas small animals may flee, simply because they have no other option. However, integration of body size and temperature effects is rarely approached in the study of antipredator behaviour in vertebrate ectotherms. In the present study we investigated whether temperature affects antipredator responses of tegu lizards, Tupinambis merianae, with distinct body sizes, testing the hypothesis that small tegus (juveniles) run away from predators regardless of the environmental temperature, because defensive aggression may not be an effective predator deterrent, whereas adults, which are larger, use aggressive defence at low temperatures, when running performance might be suboptimal. We recorded responses of juvenile (small) and adult (large) tegu lizards to a simulated predatory attack at five environmental temperatures in the laboratory. Most differences between the two size classes were observed at low temperatures: large tegus were more aggressive overall than were small tegus at all temperatures tested, but at lower temperatures, the small lizards often used escape responses whereas the large ones either adopted a defensive posture or remained inactive. These results provide strong evidence that body size and temperature affect the antipredator responses of vertebrate ectotherms. We discuss the complex and intricate network of evolutionary and ecological parameters that are likely to be involved in the evolution of such interactions. (C) 2009 The Association for the Study of Animal Behaviour. Published by Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Snakes are ectothermic animals and, therefore, their physiological functions are strongly affected by temperature. For instance, the resting metabolic rate (RMR) of this animals increase with the rise in body temperature. However, metabolic determinations in ectothermic organisms, including snakes, are generally made by submitting the animals to constant temperature regimes. This experimental procedure, although widely used, accepted and certainly suitable in several cases, submit the animals to a very different situation from that experienced by them in nature. In fact, ectothermics are known by presenting extensive variations in their body temperatures trough the day and/or seasons. If this disagreement between the thermal biology of the animals and the experimental conditions, for instance over the circadian cycle, affects the determinations of metabolic rates of ectotherm animals, remains quite uncertain. Thus, this study aimed to test the effects of different thermal regimes (fluctuating vs constant) in different temperature ranges over the TMR of rattlesnakes (Crotalus durissus). Therefore, the TMR of rattlesnakes was measured by the oxygen consumption rates ( V O2) in the constant temperatures of 15°C, 20°C, 25°C, 30°C and 35°C. For fluctuating regimes, snakes were measured in thermoperiods of 12/12 hours, as follows: 15°C and 25°C; 20°C and 30°C; 25°C and 35°C. Our results show that the RMR of C. durissus rises as the temperature increases, regardless of the thermal regime. The obtained RMR in the constant regimes of 20°C and 25°C was not different from that measured in the correspondent fluctuating regimes (i.e., 15 - 25°C e 20 - 30°C). However, at constant 30°C, the RMR was significantly higher than that obtained in the 30°C fluctuating regime (25 - 35ºC). This indicates that the potential effects in submitting of snakes to different thermal regimes of its thermal biology become more important with...