43 resultados para ETHYLENE
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
With the objective of obtaining slow-acting isoniazid derivatives, of potential use as chemoprophylactics or chemotherapeutics in tuberculosis, the micelle-forming copolymer of poly(ethylene glycol)-poly(aspartic acid) prodrug with isoniazid was synthesized. The derivative obtained was found to be active in Mycobacterium Il(tuberculosis culture, with a minimal inhibitory concentration (MIC) 5.6 times lower than that of the tuberculostatic drug.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
PURPOSE: To assess the acquisition of suture skills by training on ethylene-vinyl acetate bench model in novice medical students.METHODS: Sixteen medical students without previous surgery experience (novices) were randomly divided into two groups. During one hour group A trained sutures on ethylene-vinyl acetate (EVA) bench model with feedback of instructors, while group B (control) received a faculty-directed training based on books and instructional videos. All students underwent a both pre-and post-tests to perform two-and three-dimensional sutures on ox tongue. All recorded performances were evaluated by two blinded evaluators, using the Global Rating Scale.RESULTS: Although both groups have had a better performance (p<0.05) in the post-test when compared with the pre-test, the analysis of post-test showed that group A (EVA) had a better performance (p<0.05) when compared with group B (control).CONCLUSION: The ethylene vinyl acetate bench model allowed the novice students to acquire suture skills faster when compared to the traditional model of teaching.
Resumo:
The present experiments aimed to examine the substitution of glycerol (G) by ethylene glycol (E) as a cryoprotective agent for stallion spermatozoa. Two different ethylene glycol concentrations (5% and 10%) and also the association of glycerol (2%) and ethylene glycol (3%) (E/G) were studied (Experiment 1). In Experiment 2, two packing systems (0.5 x 4.0 ml) were evaluated using both cryoprotectors. In both experiments, the sperm membrane integrity after freezing was evaluated using transmission electron microscopy. The mean post-thaw motility was 34.25, 36.5, 29.25 and 34.75% for G5%, E5%, E10% and E/G, respectively. It was observed that the percentage of motile spermatozoa was significantly smaller (P<0.05) when semen was processed with E10%. A decrease in the acrosome integrity was observed in frozen thawed spermatozoa from all treated groups. It was observed that 28.0, 22.5, 25.5 and 22.5 % of the sperm cells had a normal acrosome following freezing with G5%, E5%, E10% and E/G, respectively. Undulation of the outer acrosomal membrane, acrosomal swelling and loss of acrosomal content density and homogeneity were the most evident ultrastructural alterations observed. In Experiment 2, the post-thaw motility was higher (P<0.05) for sperm frozen in 0.5 ml straws than in 4.0 mi straws, regardless of the cryoprotector used. The ultrastructural evaluation showed 26.7 and 16.0% of intact acrosomes for sperm frozen in 0.5 ml and 4.0 ml straws, respectively. We concluded that ethylene glycol has similar cryoprotective properties to glycerol and that utilisation of 0.5 ml straws improved the ability of horse sperm cells to withstand damage after the cryopreservation process.
Resumo:
The partitioning of Green Fluorescent Protein (GFP) in poly(ethylene glycol)/Na-poly(acrylate) aqueous two-phase systems (PEG/NaPA-ATPS) has been investigated. The aqueous two-phase systems are formed by mixing the polymers with a salt and a protein solution. The protein partitioning in the two-phase system was investigated at 25 degrees C. The concentration of the GFP was measured by fluorimetry. It was found that the partitioning of GFP depends on the salt type, pH and concentration of PEG. The data indicates that GFP partitions more strongly to the PEG phase in presence of Na2SO4 relative to NaCl. Furthermore, the GFP partitions more to the PEG phase at higher pH. The partition to the PEG phase is strongly favoured in systems with larger tie-line lengths (i.e. systems with higher polymer concentrations). The molecular weight of PEG is important since the partition coefficient (K) of GFP gradually decreases with increasing PEG size, from K ca. 300-400 for PEG 400 to K equal to 1.19 for PEG 8000. A separation process was developed where GFP was separated from a homogenate in two extraction steps: the GFP is first partitioned to the PEG phase in a PEG 3000/NaPA 8000 system containing 3 wt% Na2SO4, where the K value of GFP was 8. The GFP is then re-extracted to a salt phase formed by mixing the previous top-phase with a Na2SO4 solution. The K-value of GFP in this back-extraction was 0.22. The total recovery based on the start material was 74%. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
Phase diagrams of poly(ethylene glycol)/polyacrylate/Na2SO4 systems have been investigated with respect to polymer size and pH. Plasmid DNA from Escherichia coil can depending on pH and polymer molecular weight be directed to a poly(ethylene glycol) or to a polyacrylate-rich phase in an aqueous two-phase system formed by these polymers. Bovine serum albumin (BSA) and E. coil homogenate proteins can be directed opposite to the plasmid partitioning in these systems. Two bioseparation processes have been developed where in the final step the pDNA is partitioned to a salt-rich phase giving a total process yield of 60-70%. In one of them the pDNA is partitioned between the polyacrylate and PEG-phases in order to remove proteins. In a more simplified process the plasmid is partitioned to a PEG-phase and back-extracted into a Na2SO4-rich phase. The novel polyacrylate/PEG system allows a strong change of the partitioning between the phases with relatively small changes in composition or pH. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
The partition of hemoglobin, lysozyme and glucose-6-phospate dehydrogenase (G6PDH) in a novel inexpensive aqueous two-phase system (ATPS) composed by poly(ethylene glycol) (PEG) and sodium polyacrylate (NaPA) has been studied. The effect of NaCl and Na2SO4, pH and PEG molecular size on the partitioning has been studied. At high pH (above 9), hemoglobin partitions strongly to the PEG-phase. Although some precipitation of hemoglobin occurs, high recovery values are obtained particularly for lysozyme and G6PDH. The partitioning forces are dominated by the hydrophobic and electrochemical (salt) effects, since the positively charged lysozyme and negatively charged G6PDH partitions to the non-charged PEG and the strongly negatively charged polyacrylate enriched phase, respectively. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Terpolymers of N-isopropylacrylamide, dodecyl methacrylate (DOMA) and poly(ethylene glycol) (PEG) methacrylate, were synthesized by random copolymerization, and the composition was controlled to achieve systems having different thermosensitivities. H-1 NMR spectra and gel permeation chromatography (GPC) were employed to characterize the different samples obtained. The solution properties were studied by employing spectrophotometry, fluorescence, and dynamic light scattering techniques. The chemical compositions in the final terpolymers are close to those in the feed. The polymers exhibited cloud point temperatures (T-es) varying from 17 to 52 degrees C. Micropolarity studies using I-1/I-3 ratio of the vibronic bands of pyrene show the formation of amphiphilic aggregates capable of incorporating hydrophobic drugs as the polymer concentration is increased. The critical aggregation concentration (CAC) increases from 3.6 x 10(-3) to 1 x 10(-2) g/l with the PEG content varying from 5 to 35 mol%. Anisotropy measurements confirm the results obtained by pyrene fluorescence and show that the aggregates resulting from intermolecular interactions present different organizations. The hydrodynamic diameters (Dh) of the aggregates determined by dynamic light scattering (DLS) vary from 40 to 150 nm depending on the terpolymer composition. The T-cs and Dh values decreased with the ionic strength, and this behavior was attributed to the dehydration of the polymeric micelles. The capacity of solubilization of the aggregates was evaluated by employing pyrene, and the obtained results confirm the ability to incorporate hydrophobic molecules. (c) 2005 Elsevier B.V All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The recycling of soft drink bottles poly(ethylene terephthalate) (PET) has been used as an additive in varnish containing alkyd resin. The PET, called to recycled PET (PET-R), was added to the varnish in increasing amounts. Samples of varnish containing PET-R (VPET-R) were used as a film onto slides and its thermal properties were evaluated using thermogravimetry (TG). Throughout the visual analysis and thermal behavior of VPET-R it is possible to identify that the maximum amount of PET-R added to the varnish without changing in the film properties was 2%.The kinetic parameters, such as activation energy (E) and the pre-exponential factor (A) were calculated by the isoconversional Flynn-Wall-Ozawa method for the samples containing 0.5 to 2.0% PET-R. A decrease in the values of E was verified for lower amounts of PET-R for the thermal decomposition reaction. A kinetic compensation effect (KCE) represented by the lnA=-13.42+0.23E equation was observed for all samples. The most suitable kinetic model to describe this decomposition process is the autocatalytic Sestak-Berggren, being the model applied to heterogeneous systems.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The interaction between the nonionic surfactant C(12)E(5) and a high molar mass (M = 5.94 x 10(5)) poly(ethylene oxide) (PEG) in aqueous solution has been examined as a function of temperature by dynamic light scattering and fluorescence methods over a broad concentration range. Clusters of small surfactant micelles form within the PEO coil, leading to its extension. The hydrodynamic radius of the complex increases strongly with temperature as well as with the concentrations of surfactant and polymer. At high concentrations of the surfactant, the coil/micellar cluster complex coexists with free C(12)E(5) micelles in the solution. Fluorescence quenching measurements show a moderate micellar growth from 155 to 203 monomers in PEO-free solutions of C(12)E(5) over a wide concentration range (0.02-2.5%) at 8 degrees C. Below 0.25% C(12)E(5), the average aggregation number (N) of the micelles is smaller in the presence of PEO than in its absence. However, N increases with increasing surfactant concentration up to a plateau value of about 270 at about 1.2% (ca. 30 mM) C(12)E(5). At high surfactant concentrations, N is larger in the presence of polymer than in its absence, a finding which is connected to a significant lowering of the clouding temperature due to the PEO at these compositions. Similar results of increasing aggregation number followed by a plateau were also found at a fixed concentration of surfactant (2.5%) and varied PEO.