49 resultados para EARTHQUAKE, IRREGULARITY, NONLINEARITY, STRUCTURAL RESPONSE

em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We analyze the dynamical coupling between energy sources and structural response that must not be ignored in real engineering problems, since real motors have limited output power. We present models of certain problems that render descriptions that are closer to real situations encountered in practice.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We analyze the dynamical coupling between energy sources and structural response that must not be ignored in real engineering problems, since real motors have limited output power.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this note we investigate the influence of structural nonlinearity of a simple cantilever beam impacting system on its dynamic responses close to grazing incidence by a means of numerical simulation. To obtain a clear picture of this effect we considered two systems exhibiting impacting motion, where the primary stiffness is either linear (piecewise linear system) or nonlinear (piecewise nonlinear system). Two systems were studied by constructing bifurcation diagrams, basins of attractions, Lyapunov exponents and parameter plots. In our analysis we focused on the grazing transitions from no impact to impact motion. We observed that the dynamic responses of these two similar systems are qualitatively different around the grazing transitions. For the piecewise linear system, we identified on the parameter space a considerable region with chaotic behaviour, while for the piecewise nonlinear system we found just periodic attractors. We postulate that the structural nonlinearity of the cantilever impacting beam suppresses chaos near grazing. (C) 2007 Elsevier Ltd. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Bismuth titanate ceramics (Bi 4Ti 3O 12) with 10 wt% in excess of bismuth (BIT10) were prepared by the polymeric precursor method and sinterized in microwave (MW) and conventional furnaces (CF). The effect of microwave energy on structural and electrical behavior of BIT10 ceramics was investigated by means of X-ray diffraction (XRD), Scanning electron microscopy (SEM) and electrical measurements. The results of the BIT10 ceramics processed in the microwave furnace (MW) showed a high structural organization compared to conventional treatment (CF). Size of grains and dieletrical properties are influenced by annealing conditions while coercitive field is not dependent on it. The maximum dielectric permittivity (12000) was obtained for the sample sintered in the microwave furnace. Piezoelectric force microscopy images reveals that in-plane response may not change its sign upon polarization switching, while the out-of-plane response does with the influence of microwave energy. Copyright © 2010 American Scientific Publishers All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Continuing development of new materials makes systems lighter and stronger permitting more complex systems to provide more functionality and flexibility that demands a more effective evaluation of their structural health. Smart material technology has become an area of increasing interest in this field. The combination of smart materials and artificial neural networks can be used as an excellent tool for pattern recognition, turning their application adequate for monitoring and fault classification of equipment and structures. In order to identify the fault, the neural network must be trained using a set of solutions to its corresponding forward Variational problem. After the training process, the net can successfully solve the inverse variational problem in the context of monitoring and fault detection because of their pattern recognition and interpolation capabilities. The use of structural frequency response function is a fundamental portion of structural dynamic analysis, and it can be extracted from measured electric impedance through the electromechanical interaction of a piezoceramic and a structure. In this paper we use the FRF obtained by a mathematical model (FEM) in order to generate the training data for the neural networks, and the identification of damage can be done by measuring electric impedance, since suitable data normalization correlates FRF and electrical impedance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The search for better performance in the structural systems has been taken to more refined models, involving the analysis of a growing number of details, which should be correctly formulated aiming at defining a representative model of the real system. Representative models demand a great detailing of the project and search for new techniques of evaluation and analysis. Model updating is one of this technologies, it can be used to improve the predictive capabilities of computer-based models. This paper presents a FRF-based finite element model updating procedure whose the updating variables are physical parameters of the model. It includes the damping effects in the updating procedure assuming proportional and none proportional damping mechanism. The updating parameters are defined at an element level or macro regions of the model. So, the parameters are adjusted locally, facilitating the physical interpretation of the adjusting of the model. Different tests for simulated and experimental data are discussed aiming at defining the characteristics and potentialities of the methodology.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, electrical and structural properties were reported for pyrochlore free (1-x)[Pb(Mg1/3Nb2/3)O-3] - xPbTiO(3) (PMN-PT) (with 35 mol% PbTiO3) ceramics obtained from fine powders. Dielectric studies were focused on the investigation of the complex dielectric permittivity (epsilon '-i epsilon '') as a function of frequency and temperature. The effects of the dc applied electric field on dielectric response were also investigated. Results revealed a field dependence dielectric anomaly in the dielectric permittivity curves (epsilon(T)) in the low dc electric field region, which in turn prevails in the whole analysed frequency interval. To the best of our knowledge, these properties for the PMN-PT ceramic system have not been reported before as in this work. The results were analysed within the framework of the current models found in the literature.