115 resultados para Distributive lattices
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Let p be an odd prime. A family of (p - 1)-dimensional over-lattices yielding new record packings for several values of p in the interval [149... 3001] is presented. The result is obtained by modifying Craig's construction and considering conveniently chosen Z-submodules of Q(zeta), where zeta is a primitive pth root of unity. For p >= 59, it is shown that the center density of the (p - 1)-dimensional lattice in the new family is at least twice the center density of the (p - 1)-dimensional Craig lattice. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Let p be a prime, and let zeta(p) be a primitive p-th root of unity. The lattices in Craig's family are (p - 1)-dimensional and are geometrical representations of the integral Z[zeta(p)]-ideals < 1 - zeta(p)>(i), where i is a positive integer. This lattice construction technique is a powerful one. Indeed, in dimensions p - 1 where 149 <= p <= 3001, Craig's lattices are the densest packings known. Motivated by this, we construct (p - 1)(q - 1)-dimensional lattices from the integral Z[zeta(pq)]-ideals < 1 - zeta(p)>(i) < 1 - zeta(q)>(j), where p and q are distinct primes and i and fare positive integers. In terms of sphere-packing density, the new lattices and those in Craig's family have the same asymptotic behavior. In conclusion, Craig's family is greatly extended while preserving its sphere-packing properties.
Resumo:
In this work we present constructions of algebraic lattices in Euclidean space with optimal center density in dimensions 2, 3, 4, 6, 8 and 12, which are rotated versions of the lattices Λn, for n = 2,3,4,6,8 and K12. These algebraic lattices are constructed through twisted canonical homomorphism via ideals of a ring of algebraic integers. Mathematical subject classification: 18B35, 94A15, 20H10.
Resumo:
Properties of localized states on array of BEC confined to a potential, representing superposition of linear and nonlinear optical lattices are investigated. For a shallow lattice case the coupled mode system has been derived. We revealed new types of gap solitons and studied their stability. For the first time a moving soliton solution has been found. Analytical predictions are confirmed by numerical simulations of the Gross-Pitaevskii equation with jointly acting linear and nonlinear periodic potentials. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The properties of the localized states of a two-component Bose-Einstein condensate confined in a nonlinear periodic potential (nonlinear optical lattice) are investigated. We discuss the existence of different types of solitons and study their stability by means of analytical and numerical approaches. The symmetry properties of the localized states with respect to nonlinear optical lattices are also investigated. We show that nonlinear optical lattices allow the existence of bright soliton modes with equal symmetry in both components and bright localized modes of mixed symmetry type, as well as dark-bright bound states and bright modes on periodic backgrounds. In spite of the quasi-one-dimensional nature of the problem, the fundamental symmetric localized modes undergo a delocalizing transition when the strength of the nonlinear optical lattice is varied. This transition is associated with the existence of an unstable solution, which exhibits a shrinking (decaying) behavior for slightly overcritical (undercritical) variations in the number of atoms.
Resumo:
It is shown that the tight-binding approximation of the nonlinear Schrodinger equation with a periodic linear potential and periodic in space nonlinearity coefficient gives rise to a number of nonlinear lattices with complex, both linear and nonlinear, neighbor interactions. The obtained lattices present nonstandard possibilities, among which we mention a quasilinear regime, where the pulse dynamics obeys essentially the linear Schrodinger equation. We analyze the properties of such models both in connection to their modulational stability, as well as in regard to the existence and stability of their localized solitary wave solutions.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The cubic perovskite related material CaCu3Ti4O12 has attracted a great deal of attention due to the high values of the static dielectric constant, of order 104, approximately constant in the temperature range 100-600 K. The substitution of Ca by Cd results in a similar temperature dependence but a static dielectric constant more than one order of magnitude lower. A theoretical electronic structure study is performed on CaCu3Ti4O12 (CCTO) and CdCu3Ti4O12 (CdCTO) using a tight binding with overlap method. Although the calculations are performed in a paramagnetic configuration, excellent agreement with experiment was found for the calculated band gap of CCTO. In spite of the fact that the band structures of both systems look practically the same, a significant difference is found in the calculated bond strength of Ca-O and Cd-O pairs, driven by the presence of Ti, with Ca-O interaction in CCTO loosened with respect to Cd-O interaction in the cadmium compound. It is suggested that O vacancies are more easily formed in CCTO, this being related to the lower electronegativity of Ca as compared to Cd. The formation of oxygen vacancies could be the origin of the difference in the static dielectric constant of the two compounds.
Resumo:
The rural-urban migration phenomenon is analyzed by using an agent-based computational model. Agents are placed on lattices which dimensions varying from d = 2 up to d = 7. The localization of the agents in the lattice defines that their social neighborhood (rural or urban) is not related to their spatial distribution. The effect of the dimension of lattice is studied by analyzing the variation of the main parameters that characterizes the migratory process. The dynamics displays strong effects even for around one million of sites, in higher dimensions (d = 6, 7).
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)