On a refinement of Craig's lattices
Contribuinte(s) |
Universidade Estadual Paulista (UNESP) |
---|---|
Data(s) |
20/05/2014
20/05/2014
01/06/2011
|
Resumo |
Let p be an odd prime. A family of (p - 1)-dimensional over-lattices yielding new record packings for several values of p in the interval [149... 3001] is presented. The result is obtained by modifying Craig's construction and considering conveniently chosen Z-submodules of Q(zeta), where zeta is a primitive pth root of unity. For p >= 59, it is shown that the center density of the (p - 1)-dimensional lattice in the new family is at least twice the center density of the (p - 1)-dimensional Craig lattice. (C) 2010 Elsevier B.V. All rights reserved. |
Formato |
1440-1442 |
Identificador |
http://dx.doi.org/10.1016/j.jpaa.2010.09.004 Journal of Pure and Applied Algebra. Amsterdam: Elsevier B.V., v. 215, n. 6, p. 1440-1442, 2011. 0022-4049 http://hdl.handle.net/11449/22142 10.1016/j.jpaa.2010.09.004 WOS:000287911100021 |
Idioma(s) |
eng |
Publicador |
Elsevier B.V. |
Relação |
Journal of Pure and Applied Algebra |
Direitos |
closedAccess |
Tipo |
info:eu-repo/semantics/article |