On a refinement of Craig's lattices


Autoria(s): Flores, Andre Luiz; Interlando, J. Carmelo; da Nobrega Neto, Trajano Pires; Dantas Lopes, Jose Othon
Contribuinte(s)

Universidade Estadual Paulista (UNESP)

Data(s)

20/05/2014

20/05/2014

01/06/2011

Resumo

Let p be an odd prime. A family of (p - 1)-dimensional over-lattices yielding new record packings for several values of p in the interval [149... 3001] is presented. The result is obtained by modifying Craig's construction and considering conveniently chosen Z-submodules of Q(zeta), where zeta is a primitive pth root of unity. For p >= 59, it is shown that the center density of the (p - 1)-dimensional lattice in the new family is at least twice the center density of the (p - 1)-dimensional Craig lattice. (C) 2010 Elsevier B.V. All rights reserved.

Formato

1440-1442

Identificador

http://dx.doi.org/10.1016/j.jpaa.2010.09.004

Journal of Pure and Applied Algebra. Amsterdam: Elsevier B.V., v. 215, n. 6, p. 1440-1442, 2011.

0022-4049

http://hdl.handle.net/11449/22142

10.1016/j.jpaa.2010.09.004

WOS:000287911100021

Idioma(s)

eng

Publicador

Elsevier B.V.

Relação

Journal of Pure and Applied Algebra

Direitos

closedAccess

Tipo

info:eu-repo/semantics/article