8 resultados para Directly modulated feedback
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
A performance comparison between a recently proposed novel technique known as fast orthogonal frequency-division multiplexing (FOFDM) and conventional orthogonal frequency-division multiplexing (OFDM) is undertaken over unamplified, intensity-modulated, and direct-detected directly modulated laser-based optical signals. Key transceiver parameters, such as the maximum achievable transmission capacity and the digital-to-analog/analog-to-digital converter (DAC/ADC) effects are explored thoroughly. It is shown that, similarly to conventional OFDM, the least complex and bandwidth efficient FOFDM can support up to similar to 20 Gb/s over 500 m worst-case multimode fiber (MMF) links having 3 dB effective bandwidths of similar to 200 MHz X km. For compensation of the DAC/ADC roll-off, a power-loading (PL) algorithm is adopted, leading to an FOFDM system improvement of similar to 4 dB. FOFDM and conventional OFDM give similar optimum DAC/ADC parameters over 500 m worst-case MMF, while over 50 km single-mode fiber a maximum deviation of only similar to 1 dB in clipping ratio is observed due to the imperfect chromatic dispersion compensation caused by one-tap equalizers.
Resumo:
We proposed a simple feedback control method to suppress chaotic behavior in oscillators with limited power supply. The small-amplitude controlling signal is applied directly to the power supply system, so as to alter the characteristic curve of the driving motor. Numerical results are presented showing the method efficiency for a wide range of control parameters. Moreover, we have found that, for some parameters, this kind of control may introduce coexisting periodic attractors with complex basins of attraction and, therefore, serious problems with predictability of the final state the system will asymptote to. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
Since the mid 1980s the Atomic Force Microscope is one the most powerful tools to perform surface investigation, and since 1995 Non-Contact AFM achieved true atomic resolution. The Frequency-Modulated Atomic Force Microscope (FM-AFM) operates in the dynamic mode, which means that the control system of the FM-AFM must force the micro-cantilever to oscillate with constant amplitude and frequency. However, tip-sample interaction forces cause modulations in the microcantilever motion. A Phase-Locked loop (PLL) is used to demodulate the tip-sample interaction forces from the microcantilever motion. The demodulated signal is used as the feedback signal to the control system, and to generate both topographic and dissipation images. As a consequence, a proper design of the PLL is vital to the FM-AFM performance. In this work, using bifurcation analysis, the lock-in range of the PLL is determined as a function of the frequency shift (Q) of the microcantilever and of the other design parameters, providing a technique to properly design the PLL in the FM-AFM system. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
New Linear Matrix Inequalities (LMI) conditions are proposed for the following problem, called Strictly Positive Real (SPR) synthesis: given a linear time-invariant plant, find a constant output feedback matrix Ko and a constant output tandem matrix F for the controlled system to be SPR. It is assumed that the plant has the number of outputs greater than the number of inputs. Some sufficient conditions for the solution of the problem are presented and compared. These results can be directly applied in the LMI-based design of Variable Structure Control (VSC) of uncertain plants. ©2008 IEEE.
Resumo:
A simple method for designing a digital state-derivative feedback gain and a feedforward gain such that the control law is equivalent to a known and adequate state feedback and feedforward control law of a digital redesigned system is presented. It is assumed that the plant is a linear controllable, time-invariant, Single-Input (SI) or Multiple-Input (MI) system. This procedure allows the use of well-known continuous-time state feedback design methods to directly design discrete-time state-derivative feedback control systems. The state-derivative feedback can be useful, for instance, in the vibration control of mechanical systems, where the main sensors are accelerometers. One example considering the digital redesign with state-derivative feedback of a helicopter illustrates the proposed method. © 2009 IEEE.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The Frequency Modulated - Atomic Force Microscope (FM-AFM) is apowerful tool to perform surface investigation with true atomic resolution. The controlsystem of the FM-AFM must keep constant both the frequency and amplitude ofoscillation of the microcantilever during the scanning process of the sample. However,tip and sample interaction forces cause modulations in the microcantilever motion.A Phase-Locked Loop (PLL) is used as a demodulator and to generate feedback signalto the FM-AFM control system. The PLL performance is vital to the FM-AFMperformace since the image information is in the modulated microcantilever motion.Nevertheless, little attention is drawn to PLL performance in the FM-AFM literature.Here, the FM-AFM control system is simulated, comparing the performancefor di erent PLL designs.