16 resultados para Diagram efforts
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
This work describes a methodology developed for determination of costs associated to products generated in a small wastewater treatment station for sanitary wastewater from a university campus. This methodology begins with plant component units identification, relating their fluid and thermodynamics features for each point marked in its process diagram. Following, its functional diagram is developed and its formulation is elaborated, in exergetic base, describing all equations for these points, which are the constraints for exergetic production cost problem and are used in equations to determine the costs associated to products generated in SWTS. This methodology was applied to a hypothetical system based on SWTS former parts and presented consistent results when compared to expected values based on previous exergetic expertise. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
We introduce a CP trajectory diagram in bi-probability space as a powerful tool for a pictorial representation of the genuine CP and the matter effects in neutrino oscillations. The existence of correlated ambiguity in the B is uncovered. The principles of tuning the beam energy for a determination of CP-violating phase delta and the sign of Deltam(13)(2) given baseline distance are proposed to resolve the ambiguity and to maximize the CP-odd effect. We finally point out, quite contrary to what is usually believed, that the ambiguity may be resolved with similar to 50% chance in the super-JHF experiment despite its relatively short baseline of 300 km. (C) 2003 Elsevier B.V. B.V. All rights reserved.
Resumo:
We study the phase diagram for a dilute Bardeen-Cooper-Schrieffer superfluid Fermi-Fermi mixture (of distinct mass) at zero temperature using energy densities for the superfluid fermions in one (1D), two (2D), and three (3D) dimensions. We also derive the dynamical time-dependent nonlinear Euler-Lagrange equation satisfied by the mixture in one dimension using this energy density. We obtain the linear stability conditions for the mixture in terms of fermion densities of the components and the interspecies Fermi-Fermi interaction. In equilibrium there are two possibilities. The first is that of a uniform mixture of the two components, the second is that of two pure phases of two components without any overlap between them. In addition, a mixed and a pure phase, impossible in 1D and 2D, can be created in 3D. We also obtain the conditions under which the uniform mixture is stable from an energetic consideration. The same conditions are obtained from a modulational instability analysis of the dynamical equations in 1D. Finally, the 1D dynamical equations for the system are solved numerically and by variational approximation (VA) to study the bright solitons of the system for attractive interspecies Fermi-Fermi interaction in 1D. The VA is found to yield good agreement to the numerical result for the density profile and chemical potential of the bright solitons. The bright solitons are demonstrated to be dynamically stable. The experimental realization of these Fermi-Fermi bright solitons seems possible with present setups.
Antiparticle Contribution in the Cross Ladder Diagram for Bethe-Salpeter Equation in the Light-Front
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Phase transitions of freeze-dried persimmon in a large range of moisture content were determined by differential scanning calorimetry (DSC). In order to study this transitions at low and intermediate moisture content domains, samples were conditioned by adsorption at various water activities (a(w) = 0.11-0.90) at 25 degreesC. For the high moisture content region, samples were obtained by water addition. At a(w) less than or equal to 0.75 two glass transitions were visible, with T(g) decreasing with increasing water activity due to water plasticizing effect. The first T(g) is due to the matrix formed by sugars and water, the second one, less visible and less plasticized by water, is probably due to macromolecules of the fruit pulp. At a(w) between 0.80 and 0.90 a devitrification peak appeared after T(g) and before T(m). At this moisture content range, the Gordon-Taylor model represented satisfactorily the matrix glass transition curve. At the higher moisture content range (a(w) > 0.90), the more visible phenomenon was the ice melting. T(g) appeared less visible because the enthalpy change involved in glass transition is practically negligible in comparison with the latent heat of melting. In the high moisture content domain T(g) remained practically constant around T(g)' (-56.6 degreesC). (C) 2001 Elsevier B.V. B.V. All rights reserved.
Resumo:
Glass transition temperature of freeze-dried pineapple conditioned by adsorption at various water activities at 25 degreesC was determined by differential scanning calorimetry (DSC). High moisture content samples corresponding to water activities higher than 0.9, obtained by liquid water addition, were also analysed. The DSC traces showed a well-visible shift in baseline at the glass transition temperature (T(g)). Besides, no ice formation was observed until water activity was equal to 0.75. For water activities lower than 0.88, the glass transition curve showed that T(g) decreased with increasing moisture content and the experimental data could be well-correlated by the Gordon-Taylor equation. For higher water activities, this curve exhibited a discontinuity, with suddenly increasing glass transition temperatures approaching a constant value that corresponds to the T(g) of the maximally freeze-concentrated amorphous matrix. The unfreezable water content was determined through melting enthalpy dependence on the sample moisture content.
Resumo:
The influence of a nearest-neighbor Coulomb repulsion of strength V on the properties of the ferromagnetic Kondo model is analyzed using computational techniques. The Hamiltonian studied here is defined on a chain using localized S = 1/2 spins, and one orbital per site. Special emphasis is given to the influence of the Coulomb repulsion on the regions of phase separation recently discovered in this family of models, as well as on the double-exchange-induced ferromagnetic ground state. When phase separation dominates at V= 0, the Coulomb interaction breaks the large domains of the two competing phases into small islands of one phase embedded into the other. This is in agreement with several experimental results, as discussed in the text. Vestiges of the original phase separation regime are found in the spin structure factor as incommensurate peaks, even at large values of V. In the ferromagnetic regime close to density n = 0.5, the Coulomb interaction induces tendencies to charge ordering without altering the fully polarized character of the state. This regime of charge-ordered ferromagnetism may be related with experimental observations of a similar phase by Chen and Cheong [Phys. Rev. Lett. 76, 4042 (1996)]. Our results reinforce the recently introduced notion [see, e.g., S. Yunoki et al., Phys. Rev. Lett. 80, 845 (1998)] that in realistic models for manganites analyzed with unbiased many-body techniques, the ground state properties arise from a competition between ferromagnetism and phase-separation - charge-ordering tendencies. ©1999 The American Physical Society.
Resumo:
Di-urea cross-linked poly(oxyethylene)/siloxane hybrids, synthesized by the sol-gel process and containing a wide concentration range of potassium triflate, KCF3SO3, have been analyzed by x-ray diffraction and differential scanning calorimetry. The pseudo-phase diagram proposed has been taken into account in the interpretation of the complex impedance measurements. The xerogels prepared are obtained as transparent, thin monoliths. At room temperature the highest conductivity found was 2 × 10-6 Ω-1 cm-1.
Resumo:
In this paper a hybrid solid oxide fuel cell (SOFC) system is analyzed. This system applies a combined cycle utilizing gas turbine associated to a SOFC for rational decentralized energy production. Initially the relative concepts about the fuel cell are presented, followed by some chemical and technical informations such as the change of Gibbs free energy in isothermal fuel oxidation (or combustion) directly into electricity. This represents a very high fraction of the lower heating value (LHV) of a hydrocarbon fuel. In the next step a methodology for the study of SOFC associated with a gas turbine system is developed, considering the electricity and steam production for a hospital, as regard to the Brazilian conditions. This methodology is applied to energetic analysis. Natural gas is considered as a fuel. In conclusion, it is shown by a Sankey Diagram that the hybrid SOFC system may be an excellent opportunity to strengthen the decentralized energy production in Brazil. It is necessary to consider that the cogeneration in this version also is a sensible alternative from the technical point of view, demanding special methods of design, equipment selection and mainly of the contractual deals associated to electricity and fuel supply.
Resumo:
Differential scanning calorimetry (DSC) was used to determine phase transitions of freeze-dried plums. Samples at low and intermediate moisture contents, were conditioned by adsorption at various water activities (0.11≤a w≤0.90) at 25°C, whereas in the high moisture content region (a w>0.90) samples were obtained by direct water addition, with the resulting sorption isotherm being well described by the Guggenheim-Anderson-deBoer (GAB) model. Freeze-dried samples of separated plum skin and pulp were also analysed. At a w≤0.75, two glass transitions were visible, with the glass transition temperature (T g) decreasing with increasing a w due to the water plasticising effect. The first T g was attributed to the matrix formed by sugars and water. The second one, less visible and less plasticised by water, was probably due to macromolecules of the fruit pulp. The Gordon-Taylor model represented satisfactorily the matrix glass transition curve for a w≤0.90. In the higher moisture content range T g remained practically constant around T g′ (-57.5°C). Analysis of the glass transition curve and the sorption isotherm indicated that stability at a temperature of 25°C, would be attained by freeze dried plum at a water activity of 0.04, corresponding to a moisture content of 12.9% (dry basis). © 2006 SAGE Publications.
Resumo:
This work developed a methodology that uses the thermoeconomic functional diagram applied for allocating the cost of products produced by a biodiesel plant. The first part of this work discusses some definitions of exergy and thermoeconomy, with a detailed description of the biodiesel plant studied, identification of the system functions through Physical Diagram, calculation of the irreversibilities of the plant, construction of the Thermoeconomic Functional Diagram and determination of the expressions for the plant's exergetic functions. In order to calculate the exergetic increments and the physical exergy of certain flows in each step, the Chemical Engineering Simulation Software HYSYS 3.2 was used. The equipments that have the highest irreversibilities in the plant were identified after the exergy calculation. It was also found that the lowest irreversibility in the system refers to the process with a molar ratio of 6:1 and a reaction temperature of 60 °C in the transesterification process. In the second part of this work (Part II), it was calculated the thermoeconomic cost of producing biodiesel and related products, including the costs of carbon credits for the CO2 that is not released into the atmosphere, when a percentage of biodiesel is added to the petroleum diesel used by Brazil's internal diesel fleet (case study). © 2013 Elsevier Ltd. All rights reserved.
Resumo:
The effectiveness of ecological restoration actions toward biodiversity conservation depends on both local and landscape constraints. Extensive information on local constraints is already available, but few studies consider the landscape context when planning restoration actions. We propose a multiscale framework based on the landscape attributes of habitat amount and connectivity to infer landscape resilience and to set priority areas for restoration. Landscapes with intermediate habitat amount and where connectivity remains sufficiently high to favor recolonization were considered to be intermediately resilient, with high possibilities of restoration effectiveness and thus were designated as priority areas for restoration actions. The proposed method consists of three steps: (1) quantifying habitat amount and connectivity; (2) using landscape ecology theory to identify intermediate resilience landscapes based on habitat amount, percolation theory, and landscape connectivity; and (3) ranking landscapes according to their importance as corridors or bottlenecks for biological flows on a broader scale, based on a graph theory approach. We present a case study for the Brazilian Atlantic Forest (approximately 150 million hectares) in order to demonstrate the proposed method. For the Atlantic Forest, landscapes that present high restoration effectiveness represent only 10% of the region, but contain approximately 15 million hectares that could be targeted for restoration actions (an area similar to today's remaining forest extent). The proposed method represents a practical way to both plan restoration actions and optimize biodiversity conservation efforts by focusing on landscapes that would result in greater conservation benefits. © 2013 Society for Ecological Restoration.