250 resultados para Devaney chaos
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
Pós-graduação em Matemática - IBILCE
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The study of robust design methodologies and techniques has become a new topical area in design optimizations in nearly all engineering and applied science disciplines in the last 10 years due to inevitable and unavoidable imprecision or uncertainty which is existed in real word design problems. To develop a fast optimizer for robust designs, a methodology based on polynomial chaos and tabu search algorithm is proposed. In the methodology, the polynomial chaos is employed as a stochastic response surface model of the objective function to efficiently evaluate the robust performance parameter while a mechanism to assign expected fitness only to promising solutions is introduced in tabu search algorithm to minimize the requirement for determining robust metrics of intermediate solutions. The proposed methodology is applied to the robust design of a practical inverse problem with satisfactory results.
Resumo:
In this work, the occurrence of chaos (homoclinic scene) is verified in a robotic system with two degrees of freedom by using Poincare-Mel'nikov method. The studied problem was based on experimental results of a two-joint planar manipulator-first joint actuated and the second joint free-that resides in a horizontal plane. This is the simplest model of nonholonomic free-joint manipulators. The purpose of the present study is to verify analytically those results and to suggest a control strategy.
Resumo:
In this paper we consider a self-excited mechanical system by dry friction in order to study the bifurcational behavior of the arisen vibrations. The oscillating system consists of a mass block-belt-system which is self-excited by static and Coulomb friction. We analyze the system behavior numerically through bifurcation diagrams, phase portraits, frequency spectra and Poincare maps, which show the existence of nonhomoclinic and homoclinic chaos and a route to homoclinic chaos. The homoclinic chaos is also analyzed analytically via the Melnikov prediction method. The system dynamic is characterized by the existence of two potential wells in the phase plane which exhibit rich bifurcational and chaotic behavior.
Resumo:
We investigate numerically the dynamical behavior of a non-ideal mechanical system consisting of a vibrating cart containing a particle which can oscillate back and forth colliding with walls carved in the cart. This system represents an impact damper for controlling high-amplitude vibrations and chaotic motion. The motion of the cart is induced by an in-board non-ideal motor driving an unbalanced rotor. We study the phase space of the cart and the bouncing particle, in particular the intertwined smooth and fractal basin boundary structure. The control of the chaotic motion of the cart due to the particle impacts is also investigated. Our numerical results suggests that impact dampers of small masses are effective to suppress chaos, but they also increase the final-state sensitivity of the system in its phase space. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
In this work, we deal with a micro electromechanical system (MEMS), represented by a micro-accelerometer. Through numerical simulations, it was found that for certain parameters, the system has a chaotic behavior. The chaotic behaviors in a fractional order are also studied numerically, by historical time and phase portraits, and the results are validated by the existence of positive maximal Lyapunov exponent. Three control strategies are used for controlling the trajectory of the system: State Dependent Riccati Equation (SDRE) Control, Optimal Linear Feedback Control, and Fuzzy Sliding Mode Control. The controls proved effective in controlling the trajectory of the system studied and robust in the presence of parametric errors.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
In this note we investigate the influence of structural nonlinearity of a simple cantilever beam impacting system on its dynamic responses close to grazing incidence by a means of numerical simulation. To obtain a clear picture of this effect we considered two systems exhibiting impacting motion, where the primary stiffness is either linear (piecewise linear system) or nonlinear (piecewise nonlinear system). Two systems were studied by constructing bifurcation diagrams, basins of attractions, Lyapunov exponents and parameter plots. In our analysis we focused on the grazing transitions from no impact to impact motion. We observed that the dynamic responses of these two similar systems are qualitatively different around the grazing transitions. For the piecewise linear system, we identified on the parameter space a considerable region with chaotic behaviour, while for the piecewise nonlinear system we found just periodic attractors. We postulate that the structural nonlinearity of the cantilever impacting beam suppresses chaos near grazing. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Analytical models for studying the dynamical behaviour of objects near interior, mean motion resonances are reviewed in the context of the planar, circular, restricted three-body problem. The predicted widths of the resonances are compared with the results of numerical integrations using Poincare surfaces of section with a mass ratio of 10(-3) (similar to the Jupiter-Sun case). It is shown that for very low eccentricities the phase space between the 2:1 and 3:2 resonances is predominantly regular, contrary to simple theoretical predictions based on overlapping resonance. A numerical study of the 'evolution' of the stable equilibrium point of the 3:2 resonance as a function of the Jacobi constant shows how apocentric libration at the 2:1 resonance arises; there is evidence of a similar mechanism being responsible for the centre of the 4:3 resonance evolving towards 3:2 apocentric libration. This effect is due to perturbations from other resonances and demonstrates that resonances cannot be considered in isolation. on theoretical grounds the maximum libration width of first-order resonances should increase as the orbit of the perturbing secondary is approached. However, in reality the width decreases due to the chaotic effect of nearby resonances.
Resumo:
The motion of a test particle in the vicinity of exterior resonances is examined in the context of the planar, circular, restricted three-body problem. The existence of asymmetric periodic orbits associated with the 1 : n resonances (where n = 2, 3, 4, 5) is confirmed; there is also evidence of asymmetric resonances associated with larger values of n. A detailed examination of the evolution of the family of orbits associated with the 1:2 resonance shows the sequence that leads to asymmetric libration. on the basis of numerical studies of the phase space it is concluded that the existence of asymmetric libration means that the region exterior to the perturbing mass is more chaotic than the interior region. The apparent absence of 'particles' in 1 : n resonances in the solar system may reflect this inherent bias.
Resumo:
Sudden eccentricity increases of asteroidal motion in 3/1 resonance with Jupiter were discovered and explained by J. Wisdom through the occurrence of jumps in the action corresponding to the critical angle (resonant combination of the mean motions). We pursue some aspects of this mechanism, which could be termed relaxation-chaos: that is, an unconventional form of homoclinic behavior arising in perturbed integrable Hamiltonian systems for which the KAM theorem hypothesis do not hold. © 1987.