545 resultados para DENTAL ABUTMENTS
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
Objectives: This study assessed the effect of cast rectifiers on the marginal misfit of cast UCLA abutments compared to premachined UCLA abutments. The influence of casting and porcelain baking on the marginal misfit of these components was also investigated. Methods: Two groups were analyzed: test group - 10 cast UCLA abutments, finished with cast rectifier and submitted to ceramic application; control group - 10 premachined UCLA abutments, cast with noble metal alloy and submitted to ceramic application. Vertical misfit measurements were performed under light microscopy. In the test group, measurements were performed before and after the use of cast rectifiers, and after ceramic application. In the control group, measurements were performed before and after casting, and after ceramic application. Data were submitted to statistical analysis by ANOVA and Tukey's test (α= 5%). Results: The use of cast rectifiers significantly reduced the marginal misfit of cast UCLA abutments (from 25.68μm to 14.83μm; p<0.05). After ceramic application, the rectified cylinders presented misfit values (16.18μm) similar to those of premachined components (14.3 μm). Casting of the premachined UCLA abutments altered the marginal misfit of these components (from 9.63 μm to 14.6 μm; p<0.05). There were no significant changes after porcelain baking, in both groups. Conclusion: The use of cast rectifiers reduced the vertical misfit of cast UCLA abutments. Even with carefully performed laboratory steps, changes at the implant interface of premachined UCLA abutments occurred. Ceramic application did not alter the marginal misfit values of UCLA abutments.
Resumo:
Purpose: This study compared the shear bond strength (SBS) to enamel of rest seats made with a glass-ionomer cement (Fuji IX GP Fast), a resin-modified glass-ionomer cement (Fuji II LC), and a composite resin (Z100 MP) under monotonic and cyclic loading. Materials and Methods: Rest seats were built up onto the lingual surfaces of 80 intact human mandibular incisors. Specimens (n=10) were stored in distilled water at 37°C for 30 days and subjected to shear forces in a universal testing machine (0.5 mm/min) until fracture. The SBS values were calculated (MPa) using the bonding area (9.62 mm2) delimited by adhesive tags. A staircase approach was used to determine the SBS fatigue limit of each material. Specimens were submitted to either 10,000 cycles (5 Hz) or until specimen fracture. A minimum of 15 specimens was tested for each material. Scanning electron microscopy was used to examine the mode of failure. Data were statistically analyzed with one-way ANOVA and Tukey HSD tests (α = 0.05). Results: Z100 MP yielded higher (p < 0.05) SBS (12.25 MPa) than Fuji IX GP Fast (7.21 MPa). No differences were found between Fuji II LC (10.29 MPa) and the other two materials (p > 0.05). Fuji II LC (6.54 MPa) and Z100 MP (6.26 MPa) had a similar SBS limit. Fuji IX GP Fast promoted the lowest (p < 0.05) SBS fatigue limit (2.33 MPa). All samples showed cohesive failure patterns. Conclusion: Fatigue testing can provide a better means of estimating the performance of rest seats made with dental restoratives.
Resumo:
The design of the ParalAB device facilitates transfer of the path of insertion from the diagnostic cast to the mouth quickly and efficiently.
Resumo:
Standardization of measurements for marginal fit of castings is critical. This study describes the fabrication of a device that allowed fixation of specimens on a Toolmakers microscope with identical conditions according to tri-dimensional positioning of specimens, measuring location, and seating force. The device also allows mapping of the marginal discrepancies on the entire marginal perimeter of the tooth preparation.
Resumo:
STATEMENT OF PROBLEM: Despite careful procedures, master stone dies may be damaged during laboratory procedures. The dentist routinely adjusts castings because the marginal fit of casting is not as accurate as on the dies. PURPOSE: This study evaluated the technique of internal adjustment of castings with use of duplicated stone dies and a disclosing agent to improve marginal fit discrepancy. MATERIAL AND METHODS: Thirty-two nickel-chromium copings were fabricated and simulated standard clinical and laboratory procedures with 2 variables: tooth preparation convergence angles of 6 and 18 degrees, with or without internal relief. Master stone dies and their duplicates were selected for coping construction and internal adjustment, respectively. A specimen positioning device was coupled with a Toolmakers microscope to allow reproducibility of measurements. Each coping was evaluated at 8 locations of its marginal perimeter, before and after internal adjustment. RESULTS: Marginal fit discrepancy of copings were significantly reduced with an internal adjustment technique (mean > 52%) for all experimental groups. Tooth preparations with greater convergence and internally relieved castings recorded a better marginal fit. CONCLUSION: The casting internal adjustment technique with use of duplicated stone dies and a disclosing agent substantially reduced marginal fit discrepancy.
Resumo:
PURPOSE: To evaluate the number and morphology of fibroblasts grown on machined titanium healing abutments treated with an airpowder system. MATERIALS AND METHODS: Twenty-six abutments were assigned to two experimental groups: control (no treatment) and treated (exposed to the Prophy-Jet for 30 seconds). The specimens were incubated for 24 hours with fibroblastic cells in multiwell plates, followed by routine laboratory processing for scanning electron microscope analysis. The specimens were photographed at x 350, and the cell number was counted on an area of approximately 200 um2. RESULTS: No significant differences were found on morphology between the groups (P > 0.05); however, the control group presented a significantly greater amount of cells (71.44 +/- 31.93, mean +/- SD) in comparison with treated group (35.31 +/- 28.14), as indicated by a nonpaired t test (P = 0.001). CONCLUSION: The use of an air-abrasive prophylaxis system on the surface of titanium healing abutments reduced the cells proliferation but did not influence cell morphology.
Resumo:
The purpose of this study was to histomorphometrically evaluate the bone-to-implant contact and bone area around a titanium implant retrieved from a human lower jaw. A screw-shaped titanium implant (sandblasted and acid-etched surface) was removed from a 68-year-old male after having been in function for 40 months because of a fracture of the abutment screw. Following the implant removal, an undecalcified section was obtained. The histomorphometric analysis showed a rate of 75.40% of bone-to-implant contact and 89.30% of bone area filling within the limits of the implant threads. The surrounding bone healed in a well-organized pattern and could not be differentiated from the anginal alveolus. The histologic evidence showed a high degree of osseointegration in a threaded, sandblasted, and acid-etched implant retrieved from a human lower jaw after functional loading for 40 months. Copyright © 2005 by Lippincott Williams & Wilkins.
Resumo:
The dual path of insertion concept for removable partial denture (RPD) design may be used in esthetically demanding situations. When compared to conventional RPDs, the main advantage of this design is the minimal use of clasps. This clinical report describes the treatment of a patient with an anterior maxillary edentulous area using a dual path RPD. The diagnostic cast was surveyed to ensure the adequacy of the undercuts on the mesial surfaces of the anterior abutments, where rigid minor connectors were placed. Inverted V-shaped canine cingulum rest seats were prepared to provide resistance to tooth movement during function. The dual path RPD concept allows excellent esthetic results, minimizes tooth preparation, and reduces the tendency toward plaque accumulation in a Kennedy class IV partially edentulous arch. © 2008 by The American College of Prosthodontists.
Resumo:
Purpose: This study evaluated the influence of surface abrasion of transfer copings to obtain a precise master cast for a partially edentulous restoration with different inclinations. Materials and Methods: Replicas (N = 30) of a metal matrix (control group) containing two implants at 90° and 65° in relation to the benchtop were obtained using a polyether impression material and three impression techniques: square impression copings splint with dental floss and autopolymerizing acrylic resin (TRS), square impression copings abraded with aluminum oxide (TA), and square impression copings abraded with aluminum oxide and adhesive-coated (TAA). The replicas obtained in type V stone were digitalized, and the images were exported to AutoCAD software to perform the readings of possible degree alterations in implant inclinations. The results were submitted to analysis of variance (ANOVA) and Tukey test (α < 0.05). Results: Comparing the techniques with regard to the 90° implant inclination, no statistical difference was observed between the three techniques and the control group. Analyzing the three techniques with regard to the 65° implant inclination, no significant difference was seen between technique TA and the control group. Conclusions: Technique TA presented more accurate master casts than TRS and TAA techniques. The angulated implant (65°) tended to generate more imprecise master casts than implants perpendicular to the surface. © 2008 by The American College of Prosthodontists.
Resumo:
The technique presented in this article presents a protocol for treatment that reduces the time required for the fabrication and placement of an implant supported prosthesis. It also offers improved patient comfort at a lower cost when compared to conventional technology.
Resumo:
Aim: To evaluate the influence of implant positioning into extraction sockets on osseointegration. Material and methods: Implants were installed immediately into extraction sockets in the mandibles of six Labrador dogs. In the control sites, the implants were positioned in the center of the alveolus, while in the test sites, the implants were positioned 0.8 mm deeper and more lingually. After 4 months of healing, the resorptive patterns of the alveolar crest were evaluated histomorphometrically. Results: All implants were integrated in mineralized bone, mainly composed of mature lamellar bone. The alveolar crest underwent resorption at the control as well as at the test sites. After 4 months of healing, at the buccal aspects of the control and test sites, the location of the implant rough/smooth limit to the alveolar crest was 2±0.9 mm and 0.6±0.9 mm, respectively (P<0.05). At the lingual aspect, the bony crest was located 0.4 mm apically and 0.2 mm coronally to the implant rough/smooth limit at the control and test sites, respectively (NS). Conclusions: From a clinical point of view, implants installed into extraction sockets should be positioned approximately 1 mm deeper than the level of the buccal alveolar crest and in a lingual position in relation to the center of the alveolus in order to reduce or eliminate the exposure above the alveolar crest of the endosseous (rough) portion of the implant. © 2009 John Wiley & Sons A/S.
Resumo:
Purpose: The aim of this study was to evaluate the effect of different levels of unilateral angular misfit on preload maintenance of retention screws of single implant-supported prostheses submitted to mechanical cycling. Materials and methods: Premachined UCLA abutments were cast with cobalt-chromium alloy to obtain 48 crowns divided into four groups (n=12). The crowns presented no misfit in Group A (control group) and unilateral misfits of 50μm, 100μm and 200μm in the groups B, C and D, respectively. The crowns were attached to external hexagon implants with a titanium retention screw with torque of 30N/cm. Oblique loading of 130N at 2Hz was applied on each replica, totalizing 5×104 and 1×106cycles. Detorque values were measured initially and after each cycling period. Data were evaluated by analysis of variance and Tukey's HSD test (p<0.05). Results: All groups presented reduced initial detorque values (p< 0.05) in comparison to the insertion torque (30. ± 0.5. N/cm) and Group A (25.18. N/cm) exhibited the lowest reduction. After mechanical cycling, all groups presented detorque values from 19.5. N/cm to 22.38. N/cm and the mechanical cycling did not statistically influence the detorque values regardless the misfit level of the replicas. Conclusion: The unilateral misfit influenced the preload maintenance only before mechanical cycling. The mechanical cycling did not influence the torque reduction. © 2010 Japan Prosthodontic Society.
Resumo:
Objectives: The present study used strain gauge analysis to perform an in vitro evaluation of the effect of axial loading on 3 elements of implant-supported partial fixed prostheses, varying the type of prosthetic cylinder and the loading points. Material and methods: Three internal hexagon implants were linearly embedded in a polyurethane block. Microunit abutments were connected to the implants applying a torque of 20 Ncm, and prefabricated Co-Cr cylinders and plastic prosthetic cylinders were screwed onto the abutments, which received standard patterns cast in Co-Cr alloy (n = 5). Four strain gauges (SG) were bonded onto the surface of the block tangentially to the implants, SG 01 mesially to implant 1, SG 02 and SG 03 mesially and distally to implant 2, respectively, and SG 04 distally to implant 3. Each metallic structure was screwed onto the abutments with a 10 Ncm torque and an axial load of 30 kg was applied at five predetermined points (A, B, C, D, E). The data obtained from the strain gauge analyses were analyzed statistically by RM ANOVA and Tukey's test, with a level of significance of p<0.05. Results: There was a significant difference for the loading point (p=0.0001), with point B generating the smallest microdeformation (239.49 με) and point D the highest (442.77 με). No significant difference was found for the cylinder type (p=0.748). Conclusions: It was concluded that the type of cylinder did not affect in the magnitude of microdeformation, but the axial loading location influenced this magnitude.
Resumo:
The aim of this study was to evaluate stress distribution of the peri-implant bone by simulating the biomechanical influence of implants with different diameters of regular or platform switched connections by means of 3-dimensional finite element analysis. Five mathematical models of an implant-supported central incisor were created by varying the diameter (5.5 and 4.5 mm, internal hexagon) and abutment platform (regular and platform switched). For the cortical bone, the highest stress values (rmax and rvm) were observed in situation R1, followed by situations S1, R2, S3, and S2. For the trabecular bone, the highest stress values (rmax) were observed in situation S3, followed by situations R1, S1, R2, and S2. The influence of platform switching was more evident for cortical bone than for trabecular bone and was mainly seen in large platform diameter reduction.