21 resultados para DEACETYLATED CHITINS CHITOSANS
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
A polymer analogous synthesis involving the reductive amination of phosphorylcholine (PC)-glyceraldehyde with primary amines of deacetylated chitosan (M-w approximate to 57000 g mol(-1)) was used to prepare phosphorylcholine-substituted chitosans (PC-CH) with a degree of substitution (DS) ranging from similar to 11 to similar to 53 mol% PC-substituted glucosamine residues. The PC-CH derivatives were characterized by H-1 NMR spectroscopy, FTIR spectroscopy, and multiangle laser light scattering gel permeation chromatography (MALLS-GPC). The pKa of the PC-substituted amine groups (pKa approximate to 7.20) was determined by H-1 NMR titration. The PC-CH samples (1.0 g L-1) were shown to be nontoxic using an MTT assay performed with human KB cells. Aqueous solutions of PC-CH samples (4.0 g L-(1)) of DS g 22 mol% PC-substituted glucosamine residues remained clear, independently of pH (4.0 < pH < 11.0). The remarkable water solubility and nontoxicity displayed by the new PC-CH samples open up new opportunities in the design of chitosan-based biomaterials and nanoparticles.
Resumo:
The effect of deacetylated xanthan gum, additives (sucrose, soybean oil, sodium phosphate and propylene glycol) and pH modifications on mechanical properties, hydrophilicity and water activity of cassava starch-xanthan gum films has been studied. Sucrose addition resulted in the highest effect observed on cassava starch films elongation at break. The deacetylated xanthan gum had higher effect on elongation at break when comparing to the acetylated gum, although both gums presented an inferior effect in relation to the obtained with sucrose. However, when comparing to the control and PVC films, lower tensile strength resistance values were observed when adding sucrose. Increased water activity was observed for films added with sucrose, thus, increasing the material biodegradation. Sucrose and deacetylated xanthan gum addition resulted in a slight hydrophilicity increase. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
Two series of new chitosan derivatives were synthesized by reaction of deacetylated chitosan (CH) with propyl (CH-Propyl) and pentyl (CH-Pentyl) trimethylammonium bromides to obtain derivatives with increasing degrees of substitution (DS). The derivatives were characterized by 1H NMR and potentiometric titration techniques and their antifungal activities on the mycelial growth of Aspergillus flavus were investigated in vitro. The antifungal activities increase with DS and the more substituted derivatives of both series, CH-Propyl and CH-Pentyl, exhibited antifungal activities respectively three and six times higher than those obtained with commercial and deacetylated chitosan. The minimum inhibitory concentrations (MIC) were evaluated at 24, 48 and 72h by varying the polymer concentration from 0.5 to 16g/L and the results showed that the quaternary derivatives inhibited the fungus growth at polymer concentrations four times lower than that obtained with deacetylated chitosan (CH). The chitosans modified with pentyltrimethylammonium bromide exhibited higher activity and results are discussed taking into account the degree of substitution (DS). © 2012 Elsevier GmbH.
Resumo:
Chitosan has been indicated as a safe and promising polycation vector for gene delivery. However its low transfection efficiency has been a challenging obstacle for its application. To address this limitation, we synthesized chitosan derivatives which had increasing amounts of diethylethylamine groups (DEAE) attached to the chitosan main chain. The plasmid DNA VR1412 (pDNA), encoding the ß-galactosidase (ß-gal) reporter gene was used to prepare nanoparticles with the chitosan derivatives, and the transfection studies were performed with HeLa cells. By means of dynamic light scattering and zeta potential measurements, it was shown that diethylethylamine-chitosan derivatives (DEAEx-CH) were able to condense DNA into small particles having a surface charge depending on the polymer/DNA ratio (N/P ratio). Nanoparticles prepared with derivatives containing 15 and 25% of DEAE groups (DEAE15-CH and DEAE25-CH) exhibited transfection efficiencies ten times higher than that observed with deacetylated chitosan (CH). For derivatives with higher degrees of substitution (DS), transfection efficiency decreased. The most effective carriers showed low cytotoxicity and good transfection activities at low charge ratios (N/P). Vectors with low DS were easily degraded in the presence of lysozyme at physiological conditions in vitro and the nontoxicity displayed by these vectors opens up new opportunities in the design of DEAE-chitosan-based nanoparticles for gene delivery. © 2013 IOP Publishing Ltd.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Pós-graduação em Química - IBILCE
Resumo:
Pós-graduação em Química - IBILCE
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
New poly(azo) amino-chitosan compounds were obtained from the azo coupling reaction of N-benzyl chitosan and diazonium salts. The thermal behavior of these compounds was studied by thermogravimetric analysis (TG), differential thermogravimetric analysis (DTG), TG coupled with a Fourier-transform infrared, and differential scanning calorimetry (DSC). TG/DTG curves of chitin-chitosan polymer showed two thermal events attributed to water loss and decomposition of the polysaccharide after cross-linking reactions. Thermal analysis of the poly(azo) amino-chitosan compounds showed that the decomposition temperatures decreased when compared to the starting chitin-chitosan and N-benzyl chitosan. DSC results showed an agreement with the TG/DTG analyses. Thermal behavior of poly(azo) amino-chitosans suggest that these compounds could be considered as potential thermal sensors. © 2012 Akadémiai Kiadó, Budapest, Hungary.
Resumo:
Low molecular weight amphiphilic derivatives of chitosan were synthesized, characterized and their antifungal activities against Aspergillus flavus and Aspergillus parasiticus were tested. The derivatives were synthesized using as starting material a deacetylated chitosan sample in a two step process: the reaction with propyltrimethylammonium bromide (Pr), followed by reductive amination with dodecyl aldehyde. Aiming to evaluate the effect of the hydrophobic modification of the derivatives on the antifungal activity against the pathogens, the degree of substitution (DS1) by Pr groups was kept constant and the proportion of dodecyl (Dod) groups was varied from 7 to 29% (DS2). The derivatives were characterized by 1H-NMR and FTIR and their antifungal activities against the pathogens were tested by the radial growth of the colony and minimum inhibitory concentration (MIC) methods. The derivatives substituted with only Pr groups exhibited modest inhibition against A. flavus and A. parasiticus, like that obtained with deacetylated chitosan. Results revealed that the amphiphilic derivatives grafted with Dod groups exhibited increasing inhibition indexes, depending on polymer concentration and hydrophobic content. At 0.6 g/L, all amphiphilic derivatives having from 7.0 to 29% of Dod groups completely inhibited fungal growth and the MIC values were found to decrease from 4.0 g/L for deacetylated chitosan to 0.25-0.50 g/L for the derivatives. These new derivatives open up the possibility of new applications and avenues to develop effective biofungicides based on chitosan. © 2013 by the authors.
Resumo:
Chitosan-DNA nanoparticles employed in gene therapy protocols consist of a neutralised, stoichiometric core and a shell of the excess of chitosan which stabilises the particles against further coagulation. At low ionic strength, these nanoparticles possess a high stability; however, as the ionic strength increases, it weakens the electrostatic repulsion which can play a decisive part in the formation of highly aggregated particles. In this study, new results about the effect of ionic strength on the colloidal stability of chitosan-DNA nanoparticles were obtained by studying the interaction between chitosans of increasing molecular weights (5, 10, 16, 29, 57 and 150 kDa) and calf thymus DNA. The physicochemical properties of polyplexes were investigated by means of dynamic light scattering, static fluorescence spectroscopy, optic microscopy, transmission electronic microscopy and gel electrophoresis. After subsequent addition of salt to the nanoparticles solution, secondary aggregation increased the size of the polyplexes. The nanoparticles stability decreased drastically at the ionic strengths 150 and 500 mM, which caused the corresponding decrease in the thickness of the stabilising shell. The morphologies of chitosan/DNA nanoparticles at those ionic strengths were a mixture of large spherical aggregates, toroids and rods. The results indicated that to obtain stable chitosan-DNA nanoparticles, besides molecular weight and N/P ratio, it is quite important to control the ionic strength of the solution. © 2013 Copyright Taylor and Francis Group, LLC.