12 resultados para Cyclic Codes
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This study establishes that for a given binary BCH code C0 n of length n generated by a polynomial g(x) ∈ F2[x] of degree r there exists a family of binary cyclic codes {Cm 2m−1(n+1)n}m≥1 such that for each m ≥ 1, the binary cyclic code Cm 2m−1(n+1)n has length 2m−1(n + 1)n and is generated by a generalized polynomial g(x 1 2m ) ∈ F2[x, 1 2m Z≥0] of degree 2mr. Furthermore, C0 n is embedded in Cm 2m−1(n+1)n and Cm 2m−1(n+1)n is embedded in Cm+1 2m(n+1)n for each m ≥ 1. By a newly proposed algorithm, codewords of the binary BCH code C0 n can be transmitted with high code rate and decoded by the decoder of any member of the family {Cm 2m−1(n+1)n}m≥1 of binary cyclic codes, having the same code rate.
Resumo:
Let B[X; S] be a monoid ring with any fixed finite unitary commutative ring B and is the monoid S such that b = a + 1, where a is any positive integer. In this paper we constructed cyclic codes, BCH codes, alternant codes, Goppa codes, Srivastava codes through monoid ring . For a = 1, almost all the results contained in [16] stands as a very particular case of this study.
Resumo:
For any finite commutative ring B with an identity there is a strict inclusion B[X; Z(0)] subset of B[X; Z(0)] subset of B[X; 1/2(2)Z(0)] of commutative semigroup rings. This work is a continuation of Shah et al. (2011) [8], in which we extend the study of Andrade and Palazzo (2005) [7] for cyclic codes through the semigroup ring B[X; 1/2; Z(0)] In this study we developed a construction technique of cyclic codes through a semigroup ring B[X; 1/2(2)Z(0)] instead of a polynomial ring. However in the second phase we independently considered BCH, alternant, Goppa, Srivastava codes through a semigroup ring B[X; 1/2(2)Z(0)]. Hence we improved several results of Shah et al. (2011) [8] and Andrade and Palazzo (2005) [7] in a broader sense. Published by Elsevier Ltd
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
A Goppa code is described in terms of a polynomial, known as Goppa polynomial, and in contrast to cyclic codes, where it is difficult to estimate the minimum Hamming distance d from the generator polynomial. Furthermore, a Goppa code has the property that d ≥ deg(h(X))+1, where h(X) is a Goppa polynomial. In this paper, we present a decoding principle for Goppa codes constructed by generalized polynomials, which is based on modified Berlekamp-Massey algorithm.
Resumo:
The frequency spectrums are inefficiently utilized and cognitive radio has been proposed for full utilization of these spectrums. The central idea of cognitive radio is to allow the secondary user to use the spectrum concurrently with the primary user with the compulsion of minimum interference. However, designing a model with minimum interference is a challenging task. In this paper, a transmission model based on cyclic generalized polynomial codes discussed in [2] and [15], is proposed for the improvement in utilization of spectrum. The proposed model assures a non interference data transmission of the primary and secondary users. Furthermore, analytical results are presented to show that the proposed model utilizes spectrum more efficiently as compared to traditional models.
Resumo:
The Z(4)-linearity is a construction technique of good binary codes. Motivated by this property, we address the problem of extending the Z(4)-linearity to Z(q)n-linearity. In this direction, we consider the n-dimensional Lee space of order q, that is, (Z(q)(n), d(L)), as one of the most interesting spaces for coding applications. We establish the symmetry group of Z(q)(n) for any n and q by determining its isometries. We also show that there is no cyclic subgroup of order q(n) in Gamma(Z(q)(n)) acting transitively in Z(q)(n). Therefore, there exists no Z(q)n-linear code with respect to the cyclic subgroup.
Resumo:
Recently, minimum and non-minimum delay perfect codes were proposed for any channel of dimension n. Their construction appears in the literature as a subset of cyclic division algebras over Q(zeta(3)) only for the dimension n = 2(s)n(1), where s is an element of {0,1}, n(1) is odd and the signal constellations are isomorphic to Z[zeta(3)](n) In this work, we propose an innovative methodology to extend the construction of minimum and non-minimum delay perfect codes as a subset of cyclic division algebras over Q(zeta(3)), where the signal constellations are isomorphic to the hexagonal A(2)(n)-rotated lattice, for any channel of any dimension n such that gcd(n,3) = 1. (C) 2012 The Franklin Institute. Published by Elsevier Ltd. All rights reserved.
Resumo:
In this work, we propose an innovative methodology to extend the construction of minimum and non-minimum delay perfect codes as a subset of cyclic division algebras over ℚ(ζ3), where the signal constellations are isomorphic to the hexagonal An 2 -rotated lattice, for any channel of any dimension n such that gcd{n, 3) = 1.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
For a positive integer $t$, let \begin{equation*} \begin{array}{ccccccccc} (\mathcal{A}_{0},\mathcal{M}_{0}) & \subseteq & (\mathcal{A}_{1},\mathcal{M}_{1}) & \subseteq & & \subseteq & (\mathcal{A}_{t-1},\mathcal{M}_{t-1}) & \subseteq & (\mathcal{A},\mathcal{M}) \\ \cap & & \cap & & & & \cap & & \cap \\ (\mathcal{R}_{0},\mathcal{M}_{0}^{2}) & & (\mathcal{R}_{1},\mathcal{M}_{1}^{2}) & & & & (\mathcal{R}_{t-1},\mathcal{M}_{t-1}^{2}) & & (\mathcal{R},\mathcal{M}^{2}) \end{array} \end{equation*} be a chain of unitary local commutative rings $(\mathcal{A}_{i},\mathcal{M}_{i})$ with their corresponding Galois ring extensions $(\mathcal{R}_{i},\mathcal{M}_{i}^{2})$, for $i=0,1,\cdots,t$. In this paper, we have given a construction technique of the cyclic, BCH, alternant, Goppa and Srivastava codes over these rings. Though, initially in \cite{AP} it is for local ring $(\mathcal{A},\mathcal{M})$, in this paper, this new approach have given a choice in selection of most suitable code in error corrections and code rate perspectives.