46 resultados para Critical current
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
In this contribution superconducting specimens of YBa(2)Cu(3)O(7-delta) were synthesized by a modified polymeric precursor method, yielding a ceramic powder with particles of mesoscopic-size. Samples of this powder were then pressed into pellets and sintered under different conditions. The critical current density was analyzed by isothermal AC-susceptibility measurements as a function of the excitation field, as well as with isothermal DC-magnetization runs at different values of the applied field. Relevant features of the magnetic response could be associated to the microstructure of the specimens and, in particular, to the superconducting intra- and intergranular critical current properties.
Resumo:
In the present paper we consider the vortex lattice properties of a square superconductor such as the vortex patterns, the Gibbs free energy, the magnetization, and the depairing critical current density. We show that this last quantity shows a matching effect, that is, it shows a discontinuous behavior as a function of the applied magnetic field.
Resumo:
Application of high temperature superconductor Bi2Sr2Ca2Cu3Ox. (Bi-2223) compound embedded in an Ag matrix requires the knowledge of critical current as a function of mechanical properties. Commercial tapes available in different types have been developed in industrial production scale in which a combination of small diameter filaments, long tape lengths and a ductile matrix results in a conductor with low crack formation and good tolerance against strain. The measurement of critical current and the evaluation of n-index from V-I characteristic curves of Bi-2223/Ag composite tapes subjected to an initial bending strain as a function of number of thermal cycles were done for two types of Bi-2223/Ag composite tapes: with and without steel tape reinforcement. The results showed that tapes with reinforcement presented small critical current degradation as a function of the number of thermal cycles whereas tapes without reinforcement exhibited steadily critical current degradation caused by the propagation of cracks. The n-index followed the same critical current behavior.
Resumo:
High critical temperature superconductors are evolving from a scientific research subject into large-scale application devices. In order to meet this development demand they must withstand high current capacity under mechanical loads arising from thermal contraction during cooling from room temperature down to operating temperature (usually 77 K) and due to the electromagnetic forces generated by the current and the induced magnetic field. Among the HTS materials, the Bi2Sr2Ca2Cu3Ox, compound imbedded in an Ag/AgMg sheath has shown the best results in terms of critical current at 77 K and tolerance against mechanical strain. Aiming to evaluate the influence of thermal stress induced by a number of thermal shock cycles we have evaluated the V-I characteristic curves of samples mounted onto semicircular holders with different curvature radius (9.75 to 44.5 mm). The most deformed sample (epsilon = 1.08%) showed the largest reduction of critical current (40%) compared to the undeformed sample and the highest sensitivity to thermal stress (I-c/I-c0 = 0.5). The V-I characteristic curves were also fitted by a potential curve displaying n-exponents varying from 20 down to 10 between the initial and last thermal shock cycle.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
A Fault Current Limiter (FCL) based on high temperature superconducting elements with four tapes in parallel were designed and tested in 220 V line for a fault current peak between 1 kA to 4 kA. The elements employed second generation (2G) HTS tapes of YBCO coated conductor with stainless steel reinforcement. The tapes were electrically connected in parallel with effective length of 0.4 m per element (16 elements connected in series) constituting a single-phase unit. The FCL performance was evaluated through over-current tests and its recovery characteristics under load current were analyzed using optimized value of the shunt protection. The projected limiting ratio achieved a factor higher than 4 during fault of 5 cycles without degradation. Construction details and further test results will be shown in the paper. © 2010 IOP Publishing Ltd.
Resumo:
In this work, we report on the evaluation of a superconducting fault current limiter (SFCL). It is consisted of a modular superconducting device combined with a short-circuited transformer with a primary copper winding connected in series to the power line and the secondary side short-circuited by the superconducting device. The basic idea is adding a magnetic component to contribute to the current limitation by the impedance reflected to the line after transition of the superconducting device. The evaluation tests were performed with a prospective current up to 2 kA, with the short-circuited transformer of 2.5 kVA, 220 V/660 V connected to a test facility of 100 kVA power capacity. The resistive SFCL using a modular superconducting device was tested without degradation for a prospective fault current of 1.8 kA, achieving the limiting factor 2.78; the voltage achieved 282 V corresponding to an electric field of 11 V/m. The test performed with the combined SFCL (xsuperconducting device + transformer) using series and toroidal transformers showed current limiting factor of 3.1 and 2 times, respectively. The test results of the combined SFCL with short-circuited transformer showed undesirable influence of the transformer impedance, resulting in reduction of the fault current level. © 2002-2011 IEEE.
Resumo:
Using molecular dynamics simulations, we analyze the effects of artificial periodic arrays of pinning sites on the critical current of superconducting thin films as a function of vortex density. We analyze two types of periodic pinning array: hexagonal and Kagomé. For the Kagome pinning network we make calculations using two directions of transport current: along and perpendicular to the main axis of the lattice. Our results show that the hexagonal pinning array presents higher critical currents than the Kagomé and random pinning configuration for all vortex densities. In addition, the Kagomé networks show anisotropy in their transport properties. © 2012 Springer Science+Business Media, LLC.
Resumo:
The critical current and melting temperature of a vortex system are analyzed. Calculations are made for a two-dimensional film at finite temperature with two kinds of periodic pinning: hexagonal and Kagomé. A transport current parallel and perpendicular to the main axis of the pinning arrays is applied and molecular dynamics simulations are used to calculate the vortex velocities to obtain the critical currents. The structure factor and displacements of vortices at zero transport current are used to obtain the melting temperature for both pinning arrays. The critical currents are higher for the hexagonal pinning lattice and anisotropic for both pinning arrays. This anisotropy is stronger with temperature for the hexagonal array. For the Kagomé pinning lattice, our analysis shows a multi stage phase melting; that is, as we increase the temperature, each different dynamic phase melts before reaching the melting temperature. Both the melting temperature and critical currents are larger for the hexagonal lattice, indicating the role for the interstitial vortices in decreasing the pinning strength. © 2012 Springer Science+Business Media New York.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
MgB2 samples were prepared using as-supplied commercial 96% boron with strong crystalline phase and the same 96% boron (B) after ball milling. The effects of the properties of the starting B powder on the superconductivity were evaluated. We observed that samples using ball-milled 96% B, in comparison with the one made from the as-supplied 96% B, were character- ized by small grain size, broadened full width at half maximum (FWHM), and enhanced magnetic critical current density (J(c)). J(c) reached 2 x 10(3) Acm(-2) at 5 K and 8 T. The improved pinning of these samples seems to be caused by enhanced grain boundary pinning at high field.
Resumo:
Superconducting BSCCO samples made by melt-texturing process were prepared with the addition of calcium zirconate and calcium silicate nanoparticles. Bi:2212 melt-textured composites prepared with I wt.% of either addition showed different behavior for the critical current density as a function of the applied field, indicating that for each additional compound the improvement can be associated to different enhancement mechanisms, such as the creation of pinning centers and the increase on the connectivity of the grains. The estimated pinning forces indicated higher values for the calcium compound containing samples. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
A single-phase superconducting Fault Current Limiter using a bifilar coil of BSCCO-2212 tube was tested in 220 V-60 Hz line during fault current between 1 kA to 4 kA, operating in 77 K. In this work are presented the critical current dependence as a function of an external magnetic field applied and the results can be used to predict the current limiter performance. The experimental setup is described and the test results are presented for the unit conducting a steady nominal AC current of 200 A, and also during the fault time (1 to 6 cycles). The performance of the bifilar coil to provide the limiting impedance associated with the dynamic resistance developed during the beginning of the fault was analyzed and compared with other types of superconducting current limiters.
Resumo:
During the winding process of HTS coils the tapes of Bi-2223 are subjected to the influence of bending strain, axial strain, compressive force and torsional deformation resulting in I-c degradation. In the literature the effects of the individual strain components are separately analyzed in spite of during coil winding and energizing the strain-stress effects are combined. In this work using commercial tapes of Bi-2223 Ag/AgMg with and without stainless steel reinforcement several samples were wound on cylindrical FRP G-10 holder in which different combined strains are applied. Measurements of I - V characteristic curves are done to determine the degree of critical current degradation and the operational limits. The results are compared with the I, values of short samples and other specimens subjected to deformation generated by loading types such as tensile and bending strain.