25 resultados para Convex Operator
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
A new device was developed to hold linear transducers for transvaginal follicle aspiration. Efficacy of follicle aspiration was compared using a linear 6 MHz and a convex 5 MHz transducer. Fifty-five cows were submitted to follicle aspiration at random days of the estrous cycle. Aspirations were conducted with linear (n = 28) and convex (n = 38) transducers with 18 G needles at a negative pressure corresponding to 13 ml H2O/min. A greater number of follicles were aspirated using convex than to linear probe (12.4 versus 7.8, respectively, P < 0.05). Mean number of oocytes and recovery rates were similar for convex (5.4 and 48.6%) and linear (4.6 and 59.3%) transducers. Limited space between the linear transducer and needle guide restricted access to some portions of the ovary, reducing the number of follicles aspirated using a linear transducer. The newly developed adaptor allowed greater stability, holding the ovaries firmly against the linear transducer. This diminished mobility permitted a similar number of oocytes to be recovered with both transducers. In conclusion, this new adaptor provided a low cost alternative for routine follicle aspiration and oocyte recovery in cattle. (C) 2002 Elsevier B.V. All rights reserved.
Resumo:
Image restoration attempts to enhance images corrupted by noise and blurring effects. Iterative approaches can better control the restoration algorithm in order to find a compromise of restoring high details in smoothed regions without increasing the noise. Techniques based on Projections Onto Convex Sets (POCS) have been extensively used in the context of image restoration by projecting the solution onto hyperspaces until some convergence criteria be reached. It is expected that an enhanced image can be obtained at the final of an unknown number of projections. The number of convex sets and its combinations allow designing several image restoration algorithms based on POCS. Here, we address two convex sets: Row-Action Projections (RAP) and Limited Amplitude (LA). Although RAP and LA have already been used in image restoration domain, the former has a relaxation parameter (A) that strongly depends on the characteristics of the image that will be restored, i.e., wrong values of A can lead to poorly restoration results. In this paper, we proposed a hybrid Particle Swarm Optimization (PS0)-POCS image restoration algorithm, in which the A value is obtained by PSO to be further used to restore images by POCS approach. Results showed that the proposed PSO-based restoration algorithm outperformed the widely used Wiener and Richardson-Lucy image restoration algorithms. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
In this Letter, an entropy operator for the general unitary SU(1, 1) TFD formulation is proposed and used to lead a bosonic system from zero to finite temperature. Namely, considering the closed bosonic string as the target system, the entropy operator is used to construct the thermal vacuum. The behaviour of such a state under the breve conjugation rules is analyzed and it was shown that the breve conjugation does not affect the thermal effects. From this thermal vacuum the thermal energy, the entropy and the free energy of the closed bosonic string are calculated and the appropriated thermal distribution for the system is found after the free energy minimization. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Using the pure spinor formalism for the superstring, the vertex operator for the first massive states of the open superstring is constructed in a manifestly super-Poincare covariant manner. This vertex operator describes a massive spin-two multiplet in terms of ten-dimensional superfields.
Resumo:
In this Letter new aspects of string theory propagating in a pp-wave time dependent background with a null singularity are explored. It is shown the appearance of a 2d entanglement entropy dynamically generated by the background. For asymptotically flat observers, the vacuum close to the singularity is unitarily inequivalent to the vacuum at tau = -infinity and it is shown that the 2d entanglement entropy diverges close to this point. As a consequence. The positive time region is inaccessible for observers in tau = -infinity. For a stationary measure, the vacuum at finite time is seen by those observers as a thermal state and the information loss is encoded as a heat bath of string states. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
A time for a quantum particle to traverse a barrier is obtained for stationary states by setting the local value of a time operator equal to a constant. This time operator, called the tempus operator because it is distinct from the time of evolution, is defined as the operator canonically conjugate to the energy operator. The local value of the tempus operator gives a complex time for a particle to traverse a barrier. The method is applied to a particle with a semiclassical wave function, which gives, in the classical limit, the correct classical traversal time. It is also applied to a quantum particle tunneling through a rectangular barrier. The resulting complex tunneling time is compared with complex tunneling times from other methods.
Resumo:
We show that the BRST charge for the N = 2 superstring system can be written as Q = e(-R)(phi dz/2 pi ib gamma(+)gamma(-))e(R), when b and gamma(+/-) are super-reparametrizations ghosts. This provides a trivial proof of the nilpotence of this operator. (C) 2000 Published by Elsevier B.V. B.V. All rights reserved.
Resumo:
In this work we reexamine quantum electrodynamics of atomic electrons in the Coulomb gauge in the dipole approximation and calculate the shift of atomic energy levels in the context of Dalibard, Dupont-Roc and Cohen-Tannoudji formalism by considering the variation rates of physical observable. We then analyze the physical interpretation of the ordering of operators in the dipole approximation interaction Hamiltonian in terms of field fluctuations and self-reaction of atomic electrons, discussing the arbitrariness in the statistical functions in second-order bound-state perturbation theory. (C) 2002 Elsevier B.V. B.V. All rights reserved.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
We consider the dynamics of a system of interacting spins described by the Ginzburg-Landau Hamiltonian. The method used is Zwanzig's version of the projection-operator method, in contrast to previous derivations in which we used Mori's version of this method. It is proved that both methods produce the same answer for the Green's function. We also make contact between the projection-operator method and critical dynamics.
Resumo:
We study the role of the thachyonic excitation which emerges from the quantum electrodynamics in two dimensions with Podolsky term. The quantization is performed by using path integral framework and the operator approach.
Resumo:
We have investigated and extensively tested three families of non-convex optimization approaches for solving the transmission network expansion planning problem: simulated annealing (SA), genetic algorithms (GA), and tabu search algorithms (TS). The paper compares the main features of the three approaches and presents an integrated view of these methodologies. A hybrid approach is then proposed which presents performances which are far better than the ones obtained with any of these approaches individually. Results obtained in tests performed with large scale real-life networks are summarized.
Resumo:
This work is related with the proposition of a so-called regular or convex solver potential to be used in numerical simulations involving a certain class of constitutive elastic-damage models. All the mathematical aspects involved are based on convex analysis, which is employed aiming a consistent variational formulation of the potential and its conjugate one. It is shown that the constitutive relations for the class of damage models here considered can be derived from the solver potentials by means of sub-differentials sets. The optimality conditions of the resulting minimisation problem represent in particular a linear complementarity problem. Finally, a simple example is present in order to illustrate the possible integration errors that can be generated when finite step analysis is performed. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
We present an operator formulation of the q-deformed dual string model amplitude using an infinite set of q-harmonic oscillators. The formalism attains the crossing symmetry and factorization and allows to express the general n-point function as a factorized product of vertices and propagators.
Resumo:
We have investigated and extensively tested three families of non-convex optimization approaches for solving the transmission network expansion planning problem: simulated annealing (SA), genetic algorithms (GA), and tabu search algorithms (TS). The paper compares the main features of the three approaches and presents an integrated view of these methodologies. A hybrid approach is then proposed which presents performances which are far better than the ones obtained with any of these approaches individually. Results obtained in tests performed with large scale real-life networks are summarized.