22 resultados para Computer Modeling
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Objectives: The objective of the present study was to evaluate a prefabricated intraradicular threaded pure titanium post, designed and developed at the Sao Jose dos Campos School of Dentistry - UNESP, Brazil. This new post was designed to minimize stresses observed with prefabricated post systems and to improve cost-benefits. Materials and and methods: Fracture resistance testing of the post/core/root complex, fracture analysis by microscopy and stress analysis by the finite element method were used for post evaluation. The following four prefabricated metal post systems were analyzed: group 1, experimental post; group 2, modification of the experimental post; group 3, Flexi Post, and group 4, Para Post. For the analysis of fracture resistance, 40 bovine teeth were randomly assigned to the four groups (n=10) and used for the fabrication of test specimens simulating the situation in the mouth. The test specimens were subjected to compressive strength testing until fracture in an EMIC universal testing machine. After fracture of the test specimens, their roots were sectioned and analyzed by microscopy. For the finite element method, specimens of the fracture resistance test were simulated by computer modeling to determine the stress distribution pattern in the post systems studied. Results: The fracture test presented the following averages and standard deviation: G1 (45.63 +/- 8.77), G2 (49.98 +/- 7.08), G3 (43.84 +/- 5.52), G4 (47.61 +/- 7.23). Stress was homogenously distributed along the body of the intraradicular post in group 1, whereas high stress concentrations in certain regions were observed in the other groups. These stress concentrations in the body of the post induced the same stress concentration in root dentin. Conclusions: The experimental post (original and modified versions) presented similar fracture resistance and better results in the stress analysis when compared with the commercial post systems tested (08/2008PA/CEP).
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
This work presents a numerical model to simulate refrigerant flow through capillary tubes, commonly used as expansion devices in refrigeration systems. The flow is divided in a single-phase region, where the refrigerant is in the subcooled liquid state, and a region of two-phase flow. The capillary tube is considered straight and horizontal. The flow is taken as one-dimensional and adiabatic. Steady-state condition is also assumed and the metastable flow phenomena are neglected. The two-fluid model, considering the hydrodynamic and thermal non-equilibrium between the liquid and vapor phases, is applied to the two-phase flow region. Comparisons are made with experimental measurements of the mass flow rate and pressure distribution along two capillary tubes working with refrigerant R-134a in different operating conditions. The results indicate that the present model provides a better estimation than the commonly employed homogeneous model. Some computational results referring to the quality, void fraction, velocities, and temperatures of each phase are presented and discussed.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Being the hydrotherapy a treatment in water of great importance for children and adults with motor disability, providing safety and comfort is a very important task that is difficult to health professional without the aid of some specialized equipment. Generally imported devices are used for such purposes, these highly complex apparatus have a high cost and limit the patient's movement in water and exercise possibilities in some cases. In this work a solution will be presented to replace such equipment, using catalogs and computer modeling a prototype will be studied and new equipment will be developed to assist entry into the pool and it would also allow mobility to the patient in an aqueous medium. This safely mobility in the water increase the possibilities of exercises and the accessories founded in commercial catalogs make this project feasible from an economic aspect
Resumo:
Modeling is a step to perform a finite element analysis. Different methods of model construction are reported in literature, as the Bio-CAD modeling. The purpose of this study was to perform a model evaluation and application using two methods of Bio-CAD modeling from human edentulous hemi-mandible on the finite element analysis. From CT scans of dried human skull was reconstructed a stereolithographic model. Two methods of modeling were performed: STL conversion approach (Model 1) associated to STL simplification and reverse engineering approach (Model 2). For finite element analysis was used the action of lateral pterygoid muscle as loading condition to assess total displacement (D), equivalent von-Mises stress (VM) and maximum principal stress (MP). Two models presented differences on the geometry regarding surface number (1834 (model 1); 282 (model 2)). Were observed differences in finite element mesh regarding element number (30428 nodes/16683 elements (model 1); 15801 nodes/8410 elements (model 2). D, VM and MP stress areas presented similar distribution in two models. The values were different regarding maximum and minimum values of D (ranging 0-0.511 mm (model 1) and 0-0.544 mm (model 2), VM stress (6.36E-04-11.4 MPa (model 1) and 2.15E-04-14.7 MPa (model 2) and MP stress (-1.43-9.14 MPa (model 1) and -1.2-11.6 MPa (model 2). From two methods of Bio-CAD modeling, the reverse engineering presented better anatomical representation compared to the STL conversion approach. The models presented differences in the finite element mesh, total displacement and stress distribution.
Resumo:
The paper presents a new methodology to model material failure, in two-dimensional reinforced concrete members, using the Continuum Strong Discontinuity Approach (CSDA). The mixture theory is used as the methodological approach to model reinforced concrete as a composite material, constituted by a plain concrete matrix reinforced with two embedded orthogonal long fiber bundles (rebars). Matrix failure is modeled on the basis of a continuum damage model, equipped with strain softening, whereas the rebars effects are modeled by means of phenomenological constitutive models devised to reproduce the axial non-linear behavior, as well as the bondslip and dowel effects. The proposed methodology extends the fundamental ingredients of the standard Strong Discontinuity Approach, and the embedded discontinuity finite element formulations, in homogeneous materials, to matrix/fiber composite materials, as reinforced concrete. The specific aspects of the material failure modeling for those composites are also addressed. A number of available experimental tests are reproduced in order to illustrate the feasibility of the proposed methodology. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
This work focuses on the dynamic modeling of a flexible robotic manipulator with two flexible links and two revolute joints, which rotates in the horizontal plane. The dynamic equations are derived using the Newton-Euler formulation and the finite element method, based on elementary beam theory. Computer simulation results are presented to illustrate this study. The dynamic model becomes necessary for use in future design and control applications.
Resumo:
Tensor3D is a geometric modeling program with the capacity to simulate and visualize in real-time the deformation, specified through a tensor matrix and applied to triangulated models representing geological bodies. 3D visualization allows the study of deformational processes that are traditionally conducted in 2D, such as simple and pure shears. Besides geometric objects that are immediately available in the program window, the program can read other models from disk, thus being able to import objects created with different open-source or proprietary programs. A strain ellipsoid and a bounding box are simultaneously shown and instantly deformed with the main object. The principal axes of strain are visualized as well to provide graphical information about the orientation of the tensor's normal components. The deformed models can also be saved, retrieved later and deformed again, in order to study different steps of progressive strain, or to make this data available to other programs. The shape of stress ellipsoids and the corresponding Mohr circles defined by any stress tensor can also be represented. The application was written using the Visualization ToolKit, a powerful scientific visualization library in the public domain. This development choice, allied to the use of the Tcl/Tk programming language, which is independent on the host computational platform, makes the program a useful tool for the study of geometric deformations directly in three dimensions in teaching as well as research activities. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
This paper presents a new pre-regulator boost operating in the boundary area between the continuous and discontinuous conduction modes of the boost inductor current, where the switches and boost diode performing zero-current commutations during its turn-off, eliminating the disadvantages related to the reverse recovery losses and electromagnetic interference problems of the boost diode when operating in the continuous conduction mode. Additionally, the interleaving technique is applied in the power cell, providing a significant input current ripple reduction. It should be noticed that the main objective of this paper is to present a complete modeling for the converter operating in the critical conduction mode, allowing an improved design procedure for interleaved techniques with high input power factor, a complete dynamic analysis of the structure, and the possibility of implementing digital control techniques in closed loop.
Resumo:
DBMODELING is a relational database of annotated comparative protein structure models and their metabolic, pathway characterization. It is focused on enzymes identified in the genomes of Mycobacterium tuberculosis and Xylella fastidiosa. The main goal of the present database is to provide structural models to be used in docking simulations and drug design. However, since the accuracy of structural models is highly dependent on sequence identity between template and target, it is necessary to make clear to the user that only models which show high structural quality should be used in such efforts. Molecular modeling of these genomes generated a database, in which all structural models were built using alignments presenting more than 30% of sequence identity, generating models with medium and high accuracy. All models in the database are publicly accessible at http://www.biocristalografia.df.ibilce.unesp.br/tools. DBMODELING user interface provides users friendly menus, so that all information can be printed in one stop from any web browser. Furthermore, DBMODELING also provides a docking interface, which allows the user to carry out geometric docking simulation, against the molecular models available in the database. There are three other important homology model databases: MODBASE, SWISSMODEL, and GTOP. The main applications of these databases are described in the present article. © 2007 Bentham Science Publishers Ltd.
Resumo:
The aim of this paper is to study the cropping system as complex one, applying methods from theory of dynamic systems and from the control theory to the mathematical modeling of the biological pest control. The complex system can be described by different mathematical models. Based on three models of the pest control, the various scenarios have been simulated in order to obtain the pest control strategy only through natural enemies' introduction. © 2008 World Scientific Publishing Company.
Resumo:
The advance in the graphic computer's techniques and computer's capacity of processing made possible applications like the human anatomic structures modeling, in order to investigate diseases, surgical planning or even provide images for training of Computer Aided Diagnosis (CAD). On this context, this work exhibits an anatomical model of cardiac structures represented in a tridimensional environment. The model was represented with geometrical elements and has anatomical details, as the different tunics that compose the cardiac wall and measures that preserves the characteristics found on real structures. The validation of the anatomical model was made through quantitative comparations with real structures measures, available on specialized literature. The results obtained, evaluated by two specialists, are compatible with real anatomies, respecting the anatomical particularities. This degree of representation will allow the verification of the influence of radiological parameters, morphometric peculiarities and stage of the cardiac diseases on the quality of the images, as well as on the performance of the CAD. © 2010 IEEE.
Resumo:
This paper presents a comparative analysis between the experimental characterization and the numerical simulation results for a three-dimensional FCC photonic crystal (PhC) based on a self-assembly synthesis of monodispersive latex spheres. Specifically, experimental optical characterization, by means of reflectance measurements under variable angles over the lattice plane family [1,1, 1], are compared to theoretical calculations based on the Finite Di®erence Time Domain (FDTD) method, in order to investigate the correlation between theoretical predictions and experimental data. The goal is to highlight the influence of crystal defects on the achieved performance.