18 resultados para Carbon storage
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
Polar Regions are the most important soil carbon reservoirs on Earth. Monitoring soil carbon storage in a changing global climate context may indicate possible effects of climate change on terrestrial environments. In this regard, we need to understand the dynamics of soil organic matter in relation to its chemical characteristics. We evaluated the influence of chemical characteristics of humic substances on the process of soil organic matter mineralization in selected Maritime Antarctic soils. A laboratory assay was carried out with soils from five locations from King George Island. We determined the contents of total organic carbon, oxidizable carbon fractions of soil organic matter, and humic substances. Two in situ field experiments were carried out during two summers, in order to evaluate the CO2-C emissions in relation to soil temperature variations. The overall low amounts of soil organic matter in Maritime Antarctic soils have a low humification degree and reduced microbial activity. CO2-C emissions showed significant exponential relationship with temperature, suggesting a sharp increase in CO2-C emissions with a warming scenario, and Q10 values (the percentage increase in emission for a 10°C increase in soil temperature) were higher than values reported from elsewhere. The sensitivity of the CO2-C emission in relation to temperature was significantly correlated with the humification degree of soil organic matter and microbial activity for Antarctic soils. © 2012 Antarctic Science Ltd.
Resumo:
Although vast areas in tropical regions have weathered soils with low potassium (K) levels, little is known about the effects of K supply on the photosynthetic physiology of trees. This study assessed the effects of K and sodium (Na) supply on the diffusional and biochemical limitations to photosynthesis in Eucalyptus grandis leaves. A field experiment comparing treatments receiving K (+K) or Na (+Na) with a control treatment (C) was set up in a K-deficient soil. The net CO2 assimilation rates were twice as high in +K and 1.6 times higher in +Na than in the C as a result of lower stomatal and mesophyll resistance to CO2 diffusion and higher photosynthetic capacity. The starch content was higher and soluble sugar was lower in +K than in C and +Na, suggesting that K starvation disturbed carbon storage and transport. The specific leaf area, leaf thickness, parenchyma thickness, stomatal size and intercellular air spaces increased in +K and +Na compared to C. Nitrogen and chlorophyll concentrations were also higher in +K and +Na than in C. These results suggest a strong relationship between the K and Na supply to E. grandis trees and the functional and structural limitations to CO2 assimilation rates. © 2013 John Wiley & Sons Ltd.
Resumo:
Monitoring of soil carbon storage may indicate possible effects of climate change on the terrestrial environment and it is therefore necessary to understand the influence of redox potential and chemical characteristics of humic substances (HS) of Antarctic soil. Five soils from King George Island were used. HS were extracted, quantified and characterized by potentiometry and the content of total carbon and nitrogen determined. HS of these soils had greater aliphatic character, low content of phenolic groups, lower acidity and lower formal standard electrode potential, compared to HS of soils from other regions, suggesting they are more likely to be oxidized.
Resumo:
Pós-graduação em Agronomia (Agricultura) - FCA
Resumo:
Soil organic matter (SOM) constitutes an important reservoir of terrestrial carbon and can be considered an alternative for atmospheric carbon storage, contributing to global warming mitigation. Soil management can favor atmospheric carbon incorporation into SUM or its release from SOM to atmosphere. Thus, the evaluation of the humification degree (HD), which is an indication of the recalcitrance of SOM, can provide an estimation of the capacity of carbon sequestration by soils under various managements. The HD of SOM can be estimated by using various analytical techniques including fluorescence spectroscopy. In the present work, the potential of laser-induced breakdown spectroscopy (LIBS) to estimate the HD of SUM was evaluated for the first time. Intensities of emission lines of Al, Mg and Ca from LIBS spectra showing correlation with fluorescence emissions determined by laser-induced fluorescence spectroscopy (LIFS) reference technique were used to obtain a multivaried calibration model based on the k-nearest neighbor (k-NN) method. The values predicted by the proposed model (A-LIBS) showed strong correlation with LIFS results with a Pearson's coefficient of 0.87. The HD of SUM obtained after normalizing A-LIBS by total carbon in the sample showed a strong correlation to that determined by LIFS (0.94), thus suggesting the great potential of LIBS for this novel application. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
Pós-graduação em Agronomia (Ciência do Solo) - FCAV
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The efficiency of different methods for the decontamination of glassware used for the analysis of dissolved organic carbon (DOC) was tested using reported procedures as well as new ones proposed in this work. A Fenton solution bath (1.0 mmol L-1 Fe2+ and 100 mmol L-1 H2O2) for 1 h or for 30 min employing UV irradiation showed to combine simplicity, low cost and high efficiency. Using the optimized cleaning procedure, the DOC for stored UV-irradiated ultrapure water reached concentrations below the limit of detection (0.19 mu mol C L-1). Filtered (0.7 mu m) rain samples maintained the DOC integrity for at least 7 days when stored at 4 degrees C. The volatile organic carbon (VOC) fraction in the rain samples collected at two sites in São Paulo state (Brazil) ranged from 0% to 56% of their total DOC content. Although these high-VOC concentrations may be derived from the large use of ethanol fuel in Brazil, our results showed that when using the high-temperature catalytic oxidation technique, it is essential to measure DOC rather than non-purgeble organic carbon to estimate organic carbon, since rainwater composition can be quite variable, both geographically and temporally. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
A highly sensitive amperometric biosensor for determination of carbamate pesticides directly in water, fruit and vegetable samples has been evaluated, electrochemically characterized and optimized. The biosensor strip was fabricated in screen printed technique on a ceramic support using silver-based paste for reference electrode, and platinum-based paste for working and auxiliary electrodes. The working electrode was modified by a layer of carbon paste mixed with cobalt(II) phthalocyanine and acetylcellulose. Cholinesterase (ChE) enzymes with low enzymatic charge were immobilized on this layer. The operational simplicity of the biosensor consists in that a small drop (similar to 50 mu l) of substrate or sample is deposited on a horizontally positioned biosensor strip representing the microelectrochemical cell. The working potential of the biosensor was 370 mV versus Ag/AgI on a ship reference electrode preventing the interference of electroactive species which are oxidable at more positive potentials. The biosensor was applied to investigate the degradation of two reference ChE inhibitors in freeze dried water under different storage conditions and for direct determination of some N-methylcarbamates (NMCs) in fruit and vegetable samples at ppb concentration levels without any sample pretreatment. A comparison of the obtained results for the total carbamate concentration was done against those obtained using HPLC measurements. (C) 1999 Elsevier B.V. B.V. All rights reserved.
Resumo:
Objective: To determine the effects of storage of arterial and venous blood samples in ice water on blood gas and acid-base measurements.Design: Prospective, in vitro, laboratory study.Setting: School of veterinary medicine.Subjects: Six healthy dogs.Measurements and main results: Baseline measurements of partial pressure of oxygen (PO2), partial pressure of carbon dioxide (PCO2), pH, hemoglobin concentration (tHb), oxyhemoglobin saturation, and oxygen content (ContO(2)) were made. Bicarbonate (HCO3) and standard base excess (SBE) were calculated. Arterial and venous blood samples were separated into 1 and 3 mL samples, anaerobically transferred into 3 mL plastic syringes, and stored in ice water for 6 hours. Measurements were repeated at 15, 30 minutes, and 1, 2, 4, and 6 hours after baseline measurements. Arterial (a) PO2 increased significantly from baseline after 30 minutes of storage in the 1 mL samples and after 2 hours in the 3 mL samples. Venous (v) PO2 was significantly increased from baseline after 4 hours in the 1 mL samples and after 6 hours in the 3 mL samples. The pHa significantly decreased after 2 hours of storage in the 1 mL samples and after 4 hours in the 3 mL samples. In both the 1 and 3 mL samples, pHv decreased significantly only after 6 hours. Neither the arterial nor the venous PCO2 values changed significantly in the 1 mL samples and increased only after 6 hours in the 3 mL samples. No significant changes in tHb, ContO(2), SBE, or HCO3 were detected.Conclusions: the PO2 of arterial and venous blood increased significantly when samples were stored in plastic syringes in ice water. These increases are attributable to the diffusion of oxygen from and through the plastic of the syringe into the blood, which occurred at a rate that exceeded metabolic consumption of oxygen by the nucleated cells.
Resumo:
Incubating eggs (1,800 total) produced by a commercial flock of Cobb broiler breeders were used to determine the effects of storage duration (3 and 18 d) on gas partial pressure, thyroid hormones, and hatching parameters. Partial pressure of oxygen (pO2) and carbon dioxide (pCO2) were measured on d 18 and at internal pipping (IP) during incubation. Blood samples were collected for determination of triiodothyronine (T3), thyroxine (T4), and corticosterone concentrations in the embryos at IP and in newly hatched chicks. From 464 to 510 h of incubation, eggs were checked individually every 2 h to determine the timing and duration of IP, external pipping (EP), and total hatching time. At 18 d of incubation and at IP, pCO2 was greater in air cell of eggs stored for 3 d compared to those stored for 18 d (P < 0.05), but pO2 was greater in eggs stored for 18 d. At IP, T3 and corticosterone levels were higher in plasma of the embryos of eggs stored for 3 d compared to those stored for 18 d, but it was the reverse in newly hatched chicks (P < 0.05). Embryos from eggs stored for 18 d required more time to complete IP compared to embryos of eggs stored for only 3 d (P < 0.05), whereas the duration of EP was not affected by storage. The overall longer incubation was, however, not only due to prolonged IP but also to later occurrence of IP. It was concluded that prolonged IP as a result of long storage may be related to the late increase in corticosterone level, which may be a necessary stimulus for higher T 3/T4 ratio, late increase in pCO2 level, and decrease in pO2. The effect of long storage was a delay in hatching and a continuous increase in T3 due to higher corticosterone levels between IP and hatching, which may be an indication of the more stressful event of hatching of embryos from eggs stored longer. Differences in pCO2, pO2, T3, T4, and corticosterone levels in the incubating eggs may be manifestations of these changes culminating in altered hatching parameters and consequently differences in chick quality and growth potentials.
Resumo:
Carbon fiber reinforced polymer composites have been used in wide variety of applications including, aerospace, marine, sporting equipment as well as in the defense sector due to their outstanding properties at low density. In many of their applications, moisture absorption takes place which may result in a reduction in mechanical properties even at lower temperature service. In this work, the viscoelastic properties, such as storage modulus (E′) and loss modulus (E″), were obtained through vibration damping tests for three carbon fiber/epoxy composite families up to the saturation point (6 weeks). Three carbon fiber/epoxy composites having [0/0] s, [0/90] s, and [±45] s orientations were studied. During vibration tests the storage modulus (E′) and loss modulus (E″) were monitored as a function of moisture uptake, and it was observed that the natural frequencies and E′ values decreased with the increase during hygrothermal conditioning due to the matrix plasticization. © 2007 Wiley Periodicals, Inc.