56 resultados para Caffeic acid

em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The electrochemical oxidation of 3,4-dihydroxycinnamic acid, caffeic acid, leads to a stable electroactive poly(caffeic acid) thin film containing quinone moiety on a preactivated glassy polymeric carbon electrode. The properties of the deposited films as well as the stability study under different experimental conditions were investigated. Taking advantage of the electrochemical behavior, an analytical method based on differential pulse voltammetry for determination of caffeic acid in red wine was proposed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Glassy carbon electrodes were coated with films of poly( glutamic acid) ( PG), and the modified electrode proved to be very effective in the oxidation of caffeic acid. The performance of the film was also tested with ascorbic acid, coumaric acid, ferulic acid, sinapic acid and chlorogenic acid. At pH 5.6, all the hydroxycinnamic acids yield a higher peak current intensity when oxidized after incorporation in the PG-modified electrode, and only the oxidation of ascorbic acid exhibits overpotential reduction. At pH 3.5 only caffeic and chlorogenic acid are incorporated in the modified electrode and exhibit a well-defined oxidation wave at +0.51 V and +0.48 V, which is the base for their determination. Linear calibration graphs were obtained from 9 x 10(-6) mol L-1 to 4 x 10(-5) mol L-1 caffeic acid by linear voltammetric scan and from 4 x 10(-6) mol L-1 to 3 x 10(-5) mol L-1 by square wave voltammetric scan. The method was successfully applied to the determination of caffeic acid in red wine samples without interference from other hydroxycinnamic acids or ascorbic acid.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ethnopharmacological relevance Propolis is a bee product with numerous biological and pharmacological properties, such as immunomodulatory and anti-inflammatory activities. It has been used in folk medicine as a healthy drink and in food to improve health and prevent inflammatory diseases. However, little is known about its mechanism of action. Thus, the goal of this study was to verify the antioxidant activity and to explore the anti-inflammatory properties of propolis by addressing its intracellular mechanism of action. Caffeic acid was investigated as a possible compound responsible for propolis action. Materials and methods The antioxidant properties of propolis and caffeic acid were evaluated by using the 2,2-Diphenyl-1-picrylhydrazyl free radical (DPPH) scavenging method. To analyze the anti-inflammatory activity, Raw 264.7 macrophages were treated with different concentrations of propolis or caffeic acid, and nitric oxide (NO) production, a strong pro-inflammatory mediator, was evaluated by the Griess reaction. The concentrations of propolis and caffeic acid that inhibited NO production were evaluated on intracellular signaling pathways triggered during inflammation, namely p38 mitogen-activated protein kinase (MAPK), c-jun NH2-terminal kinase (JNK1/2), the transcription nuclear factor (NF)-κB and extracellular signal-regulated kinase (ERK1/2), through Western blot using specific antibodies. A possible effect of propolis on the cytotoxicity of hepatocytes was also evaluated, since this product can be used in human diets. Results Caffeic acid showed a higher antioxidant activity than propolis extract. Propolis and caffeic acid inhibited NO production in macrophages, at concentrations without cytotoxicity. Furthermore, both propolis and caffeic acid suppressed LPS-induced signaling pathways, namely p38 MAPK, JNK1/2 and NF-κB. ERK1/2 was not affected by propolis extract and caffeic acid. In addition, propolis and caffeic acid did not induce hepatotoxicity at concentrations with strong anti-inflammatory potential. Conclusions Propolis exerted an antioxidant and anti-inflammatory action and caffeic acid may be involved in its inhibitory effects on NO production and intracellular signaling cascades, suggesting its use as a natural source of safe anti-inflammatory drugs. © 2013 Elsevier B.V.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An accurate, sensitive, precise and rapid reversed-phase high-performance liquid chromatographic method was successfully developed and validated for the determination of caffeic acid (CA) in emulsions. The best separation was achieved on a 250 × 4.6 mm, 5.0 µm particle size RP18 XDB Waters column using ethanol and purified water (40:60 v/v) adjusted to pH 2.5 with acetic acid as the mobile phase at a flow rate of 0.7 mL/min. Ultraviolet detection was performed at 325 nm at ambient column temperature (25°C). The method was linear over the concentration range of 10-60 µg/mL (r(2) = 0.9999) with limits of detection and quantification of 1.44 and 4.38 µg/mL, respectively. CA was subjected to oxidation, acid, base and neutral degradation, as well as photolysis and heat as stress conditions. There were no interfering peaks at or near the retention time of CA. The method was applied to the determination of CA in standard and pharmaceutical products with excellent recoveries. The method is applicable in the quality control of CA.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A hydroalcoholic extract of the leaves of Alibertia macrophylla afforded the esters of caffeic acid and 2-phenylethanol or 2-methyl butane-1,4-diol. The leaves also contain caffeic acid. The acetone extract of the stems of A. macrophylla contain α-amyrin, β-amyrin, α-amyrenone, β-amyrenone, lupeol, lupenone and germanicone. Structural assignments were taken through spectral data analysis and physical properties. This is the first report on the chemistry of Alibertia. © 1991.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)