95 resultados para CONTINUOUS VARIABLE SYSTEMS
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
Adopting the framework of the Jaynes-Cummings model with an external quantum field, we obtain exact analytical expressions of the normally ordered moments for any kind of cavity and driving fields. Such analytical results are expressed in the integral form, with their integrands having a commom term that describes the product of the Glauber-Sudarshan quasiprobability distribution functions for each field, and a kernel responsible for the entanglement. Considering a specific initial state of the tripartite system, the normally ordered moments are then applied to investigate not only the squeezing effect and the nonlocal correlation measure based on the total variance of a pair of Einstein-Podolsky-Rosen type operators for continuous variable systems, but also the Shchukin-Vogel criterion. This kind of numerical investigation constitutes the first quantitative characterization of the entanglement properties for the driven Jaynes-Cummings model.
Resumo:
This paper presents a control method for a class of continuous-time switched systems, using state feedback variable structure controllers. The method is applied to the control of a two-cell dc-dc buck converter and a control circuit design using the software PSpice is proposed. The design is based on Lyapunov-Metzler-SPR systems and the performance of the resulting control system is superior to that afforded by a recently-proposed alternative sliding-mode control technique. The dc-dc power converters are very used in industrial applications, for instance, in power systems of hybrid electric vehicles and aircrafts. Good results were obtained and the proposed design is also inexpensive because it uses electric components that can be easily found for the hardware implementation. Future researches on the subject include the hardware validation of the dc-dc converter controller and the robust control design of switched systems, with structural failures. © 2011 IEEE.
Resumo:
As compared with continuous rotary systems, reciprocating motion is believed to increase the fatigue resistance of NiTi instruments. We compared the cyclic fatigue and torsional resistance of reciprocating single-file systems and continuous rotary instrumentation systems in simulated root canals. Eighty instruments from the ProTaper Universal, WaveOne, MTwo, and Reciproc systems (n = 20) were submitted to dynamic bending testing in stainless-steel simulated curved canals. Axial displacement of the simulated canals was performed with half of the instruments (n = 10), with back-and-forth movements in a range of 1.5 mm. Time until fracture was recorded, and the number of cycles until instrument fracture was calculated. Cyclic fatigue resistance was greater for reciprocating systems than for rotary systems (P < 0.05). Instruments from the Reciproc and WaveOne systems significantly differed only when axial displacement occurred (P < 0.05). Instruments of the ProTaper Universal and MTwo systems did not significantly differ (P > 0.05). Cyclic fatigue and torsional resistance were greater for reciprocating systems than for continuous rotary systems, irrespective of axial displacement.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Smart material technology has become an area of increasing interest for the development of lighter and stronger structures that are able to incorporate actuator and sensor capabilities for collocated control. In the design of actively controlled structures, the determination of the actuator locations and the controller gains is a very important issue. For that purpose, smart material modeling, modal analysis methods, and control and optimization techniques are the most important ingredients to be taken into account. The optimization problem to be solved in this context presents two interdependent aspects. The first is related to the discrete optimal actuator location selection problem, which is solved in this paper using genetic algorithms. The second is represented by a continuous variable optimization problem, through which the control gains are determined using classical techniques. A cantilever Euler-Bernoulli beam is used to illustrate the presented methodology.
Resumo:
This paper presents two discrete sliding mode control (SMC) design. The first one is a discrete-time SMC design that doesn't take into account the time-delay. The second one is a discrete-time SMC design, which takes in consideration the time-delay. The proposed techniques aim at the accomplishment simplicity and robustness for an uncertainty class. Simulations results are shown and the effectiveness of the used techniques is analyzed. © 2006 IEEE.
Resumo:
A simple method for designing a digital state-derivative feedback gain and a feedforward gain such that the control law is equivalent to a known and adequate state feedback and feedforward control law of a digital redesigned system is presented. It is assumed that the plant is a linear controllable, time-invariant, Single-Input (SI) or Multiple-Input (MI) system. This procedure allows the use of well-known continuous-time state feedback design methods to directly design discrete-time state-derivative feedback control systems. The state-derivative feedback can be useful, for instance, in the vibration control of mechanical systems, where the main sensors are accelerometers. One example considering the digital redesign with state-derivative feedback of a helicopter illustrates the proposed method. © 2009 IEEE.
Resumo:
Relaxed conditions for stability of nonlinear continuous-time systems given by fuzzy models axe presented. A theoretical analysis shows that the proposed method provides better or at least the same results of the methods presented in the literature. Digital simulations exemplify this fact. This result is also used for fuzzy regulators design. The nonlinear systems are represented by fuzzy models proposed by Takagi and Sugeno. The stability analysis and the design of controllers axe described by LMIs (Linear Matrix Inequalities), that can be solved efficiently using convex programming techniques.
Resumo:
Smart material technology has become an area of increasing interest for the development of lighter and stronger structures which are able to incorporate actuator and sensor capabilities for collocated control. In the design of actively controlled structures, the determination of the actuator locations and the controller gains, is a very important issue. For that purpose, smart material modelling, modal analysis methods, control and optimization techniques are the most important ingredients to be taken into account. The optimization problem to be solved in this context presents two interdependent aspects. The first one is related to the discrete optimal actuator location selection problem which is solved in this paper using genetic algorithms. The second is represented by a continuous variable optimization problem, through which the control gains are determined using classical techniques. A cantilever Euler-Bernoulli beam is used to illustrate the presented methodology.
Resumo:
Background: Figure rating scales were developed as a tool to determine body dissatisfaction in women, men, and children. However, it lacks in the literature the validation of the scale for body silhouettes previously adapted. We aimed to obtain evidence for construct validity of a figure rating scale for Brazilian adolescents.Methods: The study was carried out with adolescent students attending three public schools in an urban region of the municipality of Florianopolis in the State of Santa Catarina (SC). The sample comprised 232 10-19-year-old students, 106 of whom are boys and 126 girls, from the 5th series (i.e. year) of Primary School to the 3rd year of Secondary School. Data-gathering involved the application of an instrument containing 8 body figure drawings representing a range of children's and adolescents' body shapes, ranging from very slim (contour 1) to obese (contour 8). Weights and heights were also collected, and body mass index (BMI) was calculated later. BMI was analyzed as a continuous variable, using z-scores, and as a dichotomous categorical variable, representing a diagnosis of nutritional status (normal and overweight including obesity).Results: Results showed that both males and females with larger BMI z-scores chose larger body contours. Girls with higher BMI z-scores also show higher values of body image dissatisfaction.Conclusion: We provided the first evidence of validity for a figure rating scale for Brazilian adolescents.
Resumo:
In this work we show that the smooth classification of divergent diagrams of folds (f(1),..., f(s)) : (R-n, 0) -> (R-n x(...)xR(n), 0) can be reduced to the classification of the s-tuples (p(1)., W) of associated involutions. We apply the result to obtain normal forms when s <= n and {p(1),...,p(s)} is a transversal set of linear involutions. A complete description is given when s = 2 and n >= 2. We also present a brief discussion on applications of our results to the study of discontinuous vector fields and discrete reversible dynamical systems.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The paper presents a constructive heuristic algorithm (CHA) for solving directly the long-term transmission-network-expansion-planning (LTTNEP) problem using the DC model. The LTTNEP is a very complex mixed-integer nonlinear-programming problem and presents a combinatorial growth in the search space. The CHA is used to find a solution for the LTTNEP problem of good quality. A sensitivity index is used in each step of the CHA to add circuits to the system. This sensitivity index is obtained by solving the relaxed problem of LTTNEP, i.e. considering the number of circuits to be added as a continuous variable. The relaxed problem is a large and complex nonlinear-programming problem and was solved through the interior-point method (IPM). Tests were performed using Garver's system, the modified IEEE 24-Bus system and the Southern Brazilian reduced system. The results presented show the good performance of IPM inside the CHA.
Resumo:
Smart material technology has become an area of increasing interest for the development of lighter and stronger structures which are able to incorporate actuator and sensor capabilities for collocated control. In the design of actively controlled structures, the determination of the actuator locations and the controller gains, is a very important issue. For that purpose, smart material modelling, modal analysis methods, control and optimization techniques are the most important ingredients to be taken into account. The optimization problem to be solved in this context presents two interdependent aspects. The first one is related to the discrete optimal actuator location selection problem, which is solved in this paper using genetic algorithms. The second is represented by a continuous variable optimization problem, through which the control gains are determined using classical techniques. A cantilever Euler-Bernoulli beam is used to illustrate the presented methodology.
Resumo:
In this paper a method for solving the Short Term Transmission Network Expansion Planning (STTNEP) problem is presented. The STTNEP is a very complex mixed integer nonlinear programming problem that presents a combinatorial explosion in the search space. In this work we present a constructive heuristic algorithm to find a solution of the STTNEP of excellent quality. In each step of the algorithm a sensitivity index is used to add a circuit (transmission line or transformer) to the system. This sensitivity index is obtained solving the STTNEP problem considering as a continuous variable the number of circuits to be added (relaxed problem). The relaxed problem is a large and complex nonlinear programming and was solved through an interior points method that uses a combination of the multiple predictor corrector and multiple centrality corrections methods, both belonging to the family of higher order interior points method (HOIPM). Tests were carried out using a modified Carver system and the results presented show the good performance of both the constructive heuristic algorithm to solve the STTNEP problem and the HOIPM used in each step.