10 resultados para CNEN
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
Two Macusanite pebbles (MB1 and MB2) were dated with the fission-track method. Six irradiations were carried out in different nuclear reactors: Pavia (Italy), IPEN-CNEN (Brazil) and IPEN-Lima (Peru). Measurements of the thorium and uranium induced-fission per target nucleus using natural thorium thin films and natural U-doped glasses calibrated against natural uranium thin films, together with lambda(F) of 8.46 x 10(-17) a(-1) were used to determine the ages. The apparent ages were corrected using the plateau and size correction methods. Track measurements were performed by different analysts, using different counting criteria. In addition, tracks were measured on samples which had been submitted to thermal treatment as well as on samples which had not been heated. Thermal treatments were carried out to erase the fossil tracks before neutron irradiation. No significant differences have been found in individual results, using the two Macusanite pebbles and the different nuclear reactors, age correction techniques, analysts, track-counting criteria, and thermal treatments before neutron irradiation. The great majority of the results (14/17) is compatible with the Ar-Ar ages of 5.12 +/- 0.11 and 5.10 +/- 0.11 Ma, Macusanite MB1 and MB2, respectively. However, the fission-track ages are systematically less (similar to8%) than the Ar-Ar ages of the two Macusanite samples studied. (C) 2003 Published by Elsevier Ltd.
Resumo:
This study aims to determine the entrance surface skin doses in dogs (with suspected pulmonary metastasis) submitted to chest X-rays using the technique of thermoluminescence (TL) dosimetry. Twenty seven radiologic exams of dogs of different breed and sizes were performed. The radiation doses were assessed using thermoluminescent dosimeters of calcium sulphate doped with dysprosium (CaSO(4):Dy) produced at Instituto de Pesquisas Energeticas e Nucleares (IPEN-CNEN). The entrance surface skin dose range evaluated in this type of procedure was between 0.43 mGy to small size dogs and 4.22 mGy to big size dogs with repeated exams. The obtained results indicate that is extremely important the assessment of radiation doses involved in veterinary diagnostic radiology procedures, to evaluate the delivered doses to the animals, to be used as a parameter in the individual monitoring of pet's owners, who assist the animal positioning, and to protect occupationally exposed workers at the Veterinary Radiology Clinics. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Thin uranium films built on muscovite mica basis and obsidian samples having known ages were irradiated with thermal neutrons at the IPEN/CNEN reactor, São Paulo. Comparing thin film performance with the obsidian one, it was observed that the latter feel a greater neutron fluence. Nominal fluences at the used facility are in agreement with the results obtained analysing the obsidian samples. A probable hypothesis to explain this disagreement, namely, the uranium loss from the thin films, was ruled out. © 1995.
Resumo:
Radionuclides take a major role in guidelines of environmental agencies/national organizations of countries worldwide. In Brazil, CNEN-Comissão Nacional de Energia Nuclear is responsible for managing all subjects related to nuclear energy in the country. Thus, laboratories employing radionuclides for the development of their activities must submit a Radioprotection Plan to CNEN in order to get an operation license. Such plan must indicate that the laboratory is exempt of risks to the people involved and designed to fit all related environmental aspects. This was the case of LABIDRO-Hydrochemical and Isotopes Laboratory that belongs to IGCE-Geosciences and Exact Sciences Institute from UNESP - the University of the State of São Paulo Júlio de Mesquita Filho, located at Rio Claro city, São Paulo State, Brazil. The total monthly activity of the radionuclides utilized during the laboratorial activities held at LABIDRO corresponds to 0.01 μCi. This paper describes all information provided by LABIDRO in order to get the CNEN license. The LABIDRO plan also showed the expected radioactive waste released when the experiments take place and CNEN decided that it fits the guidelines established by Brazilian legislation. Therefore, LABIDRO received its license for utilizing radionuclides, which is valid until September 2016. © 2013 WIT Press.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The Nuclear Medicine is a medical specialty which uses different radioisotopes for diagnostic and therapeutic purposes. The isotopes are radioactive elements which are administered in vivo and present distribution to specific organs or cell types. The knowledge of radioactivity and notions related to ionizing radiation allow to contextualize the radiological protection measures to be taken in Nuclear Medicine. So it is possible to minimize unnecessary exposure to patients, the public, and individuals occupationally exposed and the environmental. For this it is necessary to relate the physical and technological bases apply to this mode with the standards established by regulatory agencies, including the CNEN (National Nuclear Energy Commission) and ANVISA (National Agency for Sanitary Vigilance). In this scenario, it is important that the theoretical endorse the activities which are periodically audited for verification of compliance with the standards that aim to radioprotection. One role of the Medical Physicist in these services is, therefore, act as Radiation Protection Supervisor exerting numerous activities and ensuring compliance with these standards. In this context the stage in the area of Nuclear Medicine was developed in many customers of the enterprise Rad Dimenstein & Associados LTDA, among them the hospitals Israelita Albert Einstein (HIAE), Nossa Senhora de Lourdes (HNSL), Santa Paula (HSP), Cruz Azul (CRAZ), Grupo Fleury, among other clinics. Following the routine and then carrying out various activities pertaining to the Medical Physicist in the area, it was noted that the measures and actions are extremely effective and fundamental in terms of radiological protection
Resumo:
Ionizing radiation is used nowadays in various sectors such as agriculture, industry and medicine. The main specialties of medicine which use radiation are the diagnostic radiology, nuclear medicine and radiotherapy. Radiotherapy is a therapeutic modality that is a well established feature for the treatment of malignant disease or not. However, the inadvertent use of ionizing radiation can produce deleterious effects that result in sequels that compromise the welfare of the people involved. The analysis of radiological protection emphasizes the importance of avoiding inappropriate exhibitions aimed at protecting the health of patients, the professionals involved and the general public. The basic principles of radioprotection are justification, optimization and restriction for individual dosage. The departments of radiotherapy are regulated in accordance with specific technical standards of the National Commission of Nuclear Energy (CNEN), which during the inspection for issue and renewal of the authorization of operation requires the submission of a radioprotection plan, this document that requires great demand of time, and has generated much debate among professionals in medical physics, given the difficulties encountered in their preparation. After examining the radioprotection plan of some radiotherapy services, as suggested in order to guide those responsible for drawing up these plans, especially beginners in the career of the physics of radiation, this paper presents a model plan that is in line radioprotection it requires the Technical Standards of CNEN and can easily be the reality of appropriate services
Resumo:
The Boron Neutron Capture Therapy (BNCT), based on the 10B(n,α)7Li reaction, represents a promising modality for the treatment of cancers that are resistents to conventional treatments. So, it is necessary to find drugs (boron compounds) with high selectivity for each type of cancer, the neutrons source should be well characterized and the rate of 10B(n,α)7Li reaction should be measured with great accuracy as possible. This study aimed to develop a method for manufacturing thin films of boron, for measure the 10B(n,α)7Li reaction, and analyze the uniformity of the films. Five thin films of boron were manufactured with three different concentrations of boric acid, heated to transform the acid in boron, irradiated with thermic neutrons coupled to CR-39 detectors, in BNCT line at the reactor IEA-R1 IPEN/CNEN, São Paulo. After the irradiation, the detectors were chemically attacked with NaOH to reveal the tracks. The methodology presented is effective because it resulted in deposition of boron as thin film enabling the quantitative analysis of 10B(n,α)7Li reaction. The analysis of the uniformity of density of the induced tracks in CR-39 shows that, in most of the films, there is no uniformity in surface distribution of boron, but when the film is divided, we obtain some uniform sectors
Resumo:
The sources of betatherapy for clinical use in Brazil are, the vast majority of strontium-90, radioactive element that is not produced in the country, and therefore requires importation of international laboratories accredited by the International Atomic Energy Agency (IAEA).The use of these resources is always limited the crediting of characteristic values supplied by the manufacturer tables that provide the nominal value of activity and dose distribution to determine the irradiation time of the injury. The Institute of Nuclear Energy Research (IPEN / CNEN-SP) has recently researching the emission profile of these types of radiation sources, and some jobs are being developed with ionization chambers extrapolation for the purpose of standardizing a systematic calibration sources betatherapy. Other studies using parallel measures dosimeters (TLD's) and simulations with the Monte Carlo method. Radiological films have also been used in studies of applicators dosimetric analysis of strontium-90. This paper seeks to analyze the different methods for calibration of applicators betatherapy, already consolidated in studies by examining the advantages and disadvantages of each procedure
Resumo:
This study aims to determine surface skin doses in dogs (with suspected pulmonary metastasis) submitted to chest X-rays using the technique of thermoluminescence dosimetry. Twenty seven exams from different dogs were performed at the Faculdade de Medicina Veterinária e Zootecnia da Universidade Estadual Paulista (FMVZ-UNESP/Botucatu). The doses were evaluated using thermoluminescent dosimeters of calcium sulphate doped with dysprosium (CaSO4:Dy) produced by the Instituto de Pesquisas Energéticas e Nucleares (IPEN-CNEN). The pulmonary metastasis exams are carried out in three projections, one dorsal-ventral and two lateral-lateral. During the procedures the projection thicknesses and source-skin surface distances were registered. To simulate the dog phantom the dosimeters were positioned in a cubic simulator (30x30x30 cm) of polymethylmethacrylate (PMMA) filled with water and irradiated according to the parameters of projections with the X-ray energies ranging from 45 to 70 kV. To estimate the surface skin dose the dose-response curves were obtained for X-ray energies of 50 and 70 kV using the diagnostic X-ray beam machine of the Instruments Calibration Laboratory of IPEN for doses of 1.5, 2.0, 2.5, 3.5 and 4.0 mGy. The main difficulty of this work was the dog immobilization that is reflected in poor-quality diagnostic imaging and, consequently, demands the repetition of the exams, which contributes to the increase of the doses received by the animals being studied and the clinical staff. The doses evaluated in this type of procedure are between 0.43 and 4.22 mGy. This research has shown to be extremely important for the assessment of doses involved in veterinary diagnostic radiology procedures, and as a parameter in the individual monitoring of pet’s owners who assist the animal positioning and occupationally exposed workers of the Department of Veterinary Radiology