335 resultados para C. Electrical properties

em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Undoped and indium-doped Zinc oxide (ZnO) solid films were deposited by the pyrosol process at 450 degrees C on glass substrates From solutions where In/Zn ratio was 2, 5, and 10 at.%. Electrical measurements performed at room temperature show that the addition of indium changes the resistance of the films. The resistivities of doped films are less than non-doped ZnO films by one to two orders of magnitude depending on the dopant concentration in the solution. Preferential orientation of the films with the c-axis perpendicular to the substrate was detected by X-ray diffraction and polarized extended X-ray absorption fine structures measurements at the Zn K edge. This orientation depends on the indium concentration in the starting solution. The most textured films were obtained for solutions where In/Zn ratio was 2 and 5 at.%. When In/Zn = 10 at.%, the films had a nearly random orientation of crystallites. Evidence of the incorporation of indium in the ZnO lattice was obtained from extended X-ray absorption fine structures at the In and Zn K edges. The structural analysis of the least resistive film (Zn/In = 5 at.%) shows that In substitutes Zn in the wurtzite structure. (C) 2000 Elsevier B.V. B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The electrical characterization of a high efficient multilayer polymer light emitting diode using poly[(2-methoxy-5-hexyloxy)-p-phenylenevinylene] as the emissive layer and an anionic fluorinated surfactant as the electron transport layer was performed. For the sake of comparison, a conventional single layer device was fabricated. The density current vs. voltage measurements revealed that the conventional device has a higher threshold voltage and lower current compared to the surfactant modified device. The effective barrier height for electron injection was suppressed. The influence of the interfaces and bulk contributions to the dc and high frequencies conductivities of the devices was also discussed. (c) 2006 Springer Science + Business Media, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Diamond-like carbon (DLC) films were grown from radiofrequency plasmas of acetylene-argon mixtures, at different excitation powers, P. The effects of this parameter on the plasma potential, electron density, electron temperature, and plasma activity were investigated using a Langmuir probe. The mean electron temperature increased from about 0.5 to about 7.0 eV while the mean electron density decreased from about 1.2x10(9) to about 0.2x10(9) cm(-3) as P was increased from 25 to 150 W. Both the plasma potential and the plasma activity were found to increase with increasing P. Through actinometric optical emission spectrometry, the relative concentrations of CH, [CH], and H, [H], in the discharge were mapped as a function of the applied power. A rise in [H] and a fall in [CH] with increasing P were observed and are discussed in relation to the plasma characteristics and the subimplantation model. The optical properties of the films were calculated from ultraviolet-visible spectroscopic data; the surface resistivity was measured by the two-point probe method. The optical gap, E(G), and the surface resistivity, rho(s), fall with increasing P. E(G) and rho(s) are in the ranges of about 2.0-1.3 eV and 10(14)-10(16) Omega/square, respectively. The plasma power also influences the film self-bias, V(b), via a linear dependence, and the effect of V(b) on ion bombardment during growth is addressed together with variation in the relative densities of sp(2) and sp(3) bonds in the films as determined by Raman spectroscopy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thin films of SrBi4Ti4O15 (SBTi), a prototype of the Bi-layered-ferroelectric oxide family, were obtained by a soft chemical method and crystallized in a domestic microwave oven. For comparison, films were also crystallized in a conventional method at 700 degrees C for 2 h. Structural and morphological characterization of the SBTi thin films were investigated by Xray diffraction (XRD) and atomic force microscopy (AFM), respectively. Using platinum coated silicon substrates, the ferroelectric properties of the films were determined. Remanent polarization P-r and a coercive field E-c values of 5.1 mu C/cm(2) and 135 kV/cm for the film thermally treated in the microwave oven and 5.4 mu C/cm(2) and 85 kv/cm for the film thermally treated in conventional furnace were found. The films thermally treated in the conventional furnace exhibited excellent fatigue-free characteristics up to 10(10) switching cycles indicating that SBTi thin films are a promising material for use in non-volatile memories. (C) 2007 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study aims to demonstrate how the chemical homogeneity of B cations affects the microstructure and electrical responses of (1-x) PMN-xPT ceramics. Two methodologies were employed to synthesize three different compositions, with x assuming the values 0.10, 0.28, and 0.35. If compared to conventional method, the Ti-modified columbite route, which is characterized by higher B cation homogeneity, leads to PMN-PT powders and ceramics with lower content of PNT pyrochlore phase and, for 0.65PMN-0.35PT composition, minor amount of tetragonal phase is found. Conclusively, PMN-PT ceramics obtained by modified route favors B cations homogeneity, enhancing the dielectric, ferroelectric and piezoelectric properties.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pure-and lanthanun doped Bi4Ti3O12 thin films were deposited on Pt/Ti/SiO2/Si substrate using a polymeric precursor solution. Annealing in static air and oxygen atmosphere was performed at 700 degrees C for 2 h. The obtained films were characterized by X-ray diffraction and atomic force microscopy. The dielectric constant and dissipation factor were measured in the frequency region from 1 kHz to 1 MHz. Electrical characterization of the films pointed to ferroelectricity via hysteresis loop. Films annealed in static air possess a dielectric constant higher than films annealed in oxygen atmosphere due to differences in the grain size, crystallinity and structural defects. A regularly shaped hystereses loop is observed after annealing in static air. The obtained results suggest that the annealing in oxygen atmosphere can increase the trapped charge and the relaxation phenomenon. (c) 2006 Elsevier Ltd and Techna Group S.r.l. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The addition of different dopants affects the densification, mean grain size and electrical properties of TiO2-based varistor ceramics. This paper discusses the microstructural and electrical properties of (Ta, Co, Pr) doped TiO2 systems, demonstrating that some of these systems display electrical properties that allow for their use as low voltage varistor. Dopants such as Ta2O5 play a special role in the formation of barriers at the grain boundary and in the nonlinear behavior in TiO2-based systems. The higher values of nonlinear coefficient and breakdown electric field were obtained in the system just doped with Ta2O5 and CoO.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effect of Cr2O3 on the electrical properties of the multicomponent ZnO varistors was investigated using voltage-current curves and impedance spectroscopy. The structure and morphological modifications were analysed by X-ray diffraction and scanning electron microscopy, respectively. It was observed in samples with addition 0.1 mol% Cr2O3 that there was an improvement in the electrical properties of the varistors, but the increase in concentration had a deleterious effect on the potential barrier at the grain boundary. The excess Cr2O3 segregates at the grain-boundary region and increases the donor concentration, leading to a higher leakage current.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work describes the preparation and characterization of composite materials obtained by the combination of natural rubber (NR) and carbon black (CB) in different percentages, aiming to improve their mechanical properties, processability, and electrical conductivity, aiming future applications as transducer in pressure sensors. The composites NR/CB were characterized through optical microscopy (OM), DC conductivity, thermal analysis using differential scanning calorimetry (DSC), dynamic mechanical thermal analysis (DMA), thermogravimetry (TGA), and stress-strain test. The electrical conductivity varied between 10(-9) and 10 S m(-1), depending on the percentage of CB in the composite. Furthermore, a linear (and reversible) dependence of the conductivity on the applied pressure between 0 and 1.6 MPa was observed for the sample with containing 80 wt % of NR and 20% of CB. (C) 2007 Wiley Periodicals, Inc.