5 resultados para Bayesian probability

em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Um modelo bayesiano de regressão binária é desenvolvido para predizer óbito hospitalar em pacientes acometidos por infarto agudo do miocárdio. Métodos de Monte Carlo via Cadeias de Markov (MCMC) são usados para fazer inferência e validação. Uma estratégia para construção de modelos, baseada no uso do fator de Bayes, é proposta e aspectos de validação são extensivamente discutidos neste artigo, incluindo a distribuição a posteriori para o índice de concordância e análise de resíduos. A determinação de fatores de risco, baseados em variáveis disponíveis na chegada do paciente ao hospital, é muito importante para a tomada de decisão sobre o curso do tratamento. O modelo identificado se revela fortemente confiável e acurado, com uma taxa de classificação correta de 88% e um índice de concordância de 83%.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Several statistical models can be used for assessing genotype X environment interaction (GEI) and studying genotypic stability. The objectives of this research were to show how (i) to use Bayesian methodology for computing Shukla's phenotypic stability variance and (ii) to incorporate prior information on the parameters for better estimation. Potato [Solanum tuberosum subsp. andigenum (Juz. & Bukasov) Hawkes], wheat (Triticum aestivum L.), and maize (Zea mays L.) multi environment trials (MET) were used for illustrating the application of the Bayes paradigm. The potato trial included 15 genotypes, but prior information for just three genotypes was used. The wheat trial used prior information on all 10 genotypes included in the trial, whereas for the maize trial, noninformative priors for the nine genotypes was used. Concerning the posterior distribution of the genotypic means, the maize MET with 20 sites gave less disperse posterior distributions of the genotypic means than did the posterior distribution of the genotypic means of the other METs, which included fewer environments. The Bayesian approach allows use of other statistical strategies such as the normal truncated distribution (used in this study). When analyzing grain yield, a lower bound of zero and an upper bound set by the researcher's experience can be used. The Bayesian paradigm offers plant breeders the possibility of computing the probability of a genotype being the best performer. The results of this study show that although some genotypes may have a very low probability of being the best in all sites, they have a relatively good chance of being among the five highest yielding genotypes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A methodology to define favorable areas in petroleum and mineral exploration is applied, which consists in weighting the exploratory variables, in order to characterize their importance as exploration guides. The exploration data are spatially integrated in the selected area to establish the association between variables and deposits, and the relationships among distribution, topology, and indicator pattern of all variables. Two methods of statistical analysis were compared. The first one is the Weights of Evidence Modeling, a conditional probability approach (Agterberg, 1989a), and the second one is the Principal Components Analysis (Pan, 1993). In the conditional method, the favorability estimation is based on the probability of deposit and variable joint occurrence, with the weights being defined as natural logarithms of likelihood ratios. In the multivariate analysis, the cells which contain deposits are selected as control cells and the weights are determined by eigendecomposition, being represented by the coefficients of the eigenvector related to the system's largest eigenvalue. The two techniques of weighting and complementary procedures were tested on two case studies: 1. Recôncavo Basin, Northeast Brazil (for Petroleum) and 2. Itaiacoca Formation of Ribeira Belt, Southeast Brazil (for Pb-Zn Mississippi Valley Type deposits). The applied methodology proved to be easy to use and of great assistance to predict the favorability in large areas, particularly in the initial phase of exploration programs. © 1998 International Association for Mathematical Geology.