23 resultados para Batch process

em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A significant part of film production by the coating industry is based on wet bench processes, where better understanding of their temporal dynamics could facilitate control and optimization. In this work, in situ laser interferometry is applied to study properties of flowing liquids and quantitatively monitor the dip coating batch process. Two oil standards Newtonian, non-volatile, with constant refractive indices and distinct flow properties - were measured under several withdrawing speeds. The dynamics of film physical thickness then depends on time as t(-1/2), and flow characterization becomes possible with high precision (linear slope uncertainty of +/-0.04%). Resulting kinematic viscosities for OP60 and OP400 are 1,17 +/- 0,03. St and 9,9 +/- 0,2 St, respectively. These results agree with nominal values, as provided by the manufacturer. For more complex films (a multi-component sol-gel Zirconyl Chloride aqueous solution) with a varying refractive index, through a direct polarimetric measurement, allowing also determination of the temporal evolution of physical thickness (uncertainty of +/- 0,007 microns) is also determined during dip coating.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Immobilized cell utilization in tower-type bioreactor is one of the main alternatives being studied to improve the industrial bioprocess. Other alternatives for the production of beta -lactam antibiotics, such as a cephalosporin C fed-batch p recess in an aerated stirred-tank bioreactor with free cells of Cepha-losporium acremonium or a tower-type bioreactor with immobilized cells of this fungus, have proven to be more efficient than the batch profess. In the fed-batch process, it is possible to minimize the catabolite repression exerted by the rapidly utilization of carbon sources (such as glucose) in the synthesis of antibiotics by utilizing a suitable flow rate of supplementary medium. In this study, several runs for cephalosporin C production, each lasting 200 h, were conducted in a fed-batch tower-type bioreactor using different hydrolyzed sucrose concentrations, For this study's model, modifications were introduced to take into account the influence of supplementary medium flow rate. The balance equations considered the effect of oxygen limitation inside the bioparticles. In the Monod-type rate equations, eel concentrations, substrate concentrations, and dissolved oxygen were included as reactants affecting the bioreaction rate. The set of differential equations was solved by the numerical method, and the values of the parameters were estimated by the classic nonlinear regression method following Marquardt's procedure with a 95% confidence interval. The simulation results showed that the proposed model fit well with the experimental data,and based on the experimental data and the mathematical model an optimal mass flow rate to maximize the bioprocess productivity could be proposed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Xanthan is a important biopolymer for commercial purpose and it is produced in two stages by Xanthomonas campestris. In the first one, the bacterium is cultivated in the complex medium enriched in nitrogen and the biomass produced is used as inoculum for the next stage in which the gum is produced in another medium. In this work a new medium for the first stage is proposed in place of currently used YM medium. Different formulated growth media were studied and the correspondent biomass produced was analysed as inoculum for the second stage. The inoculum and gum were produced by batch process in shaker at 27A degrees C in pH 6.0 and at 30A degrees C in pH 7.0, respectively. The gum was precipitated with ethanol (3:1 v/v). The dryed biomass and xathan gum produced were determined by drying in oven at 105 and 40A degrees C, respectively. The viscosity of the fermentation broth and 1% gum solution in water were determined in Brookfield viscometer. The formulated medium presented the increase in gum production (30%), broth (136%) and 1% gum solution viscosity (60%) compared to YM, besides the inferior cost. The results showed the importance of the quality of the inoculum from the first stage of the culture which influenced on the gum viscosity in the second stage.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Um biodigestor anaeróbio de duas fases foi utilizado para se analisar a produção de metano com diferentes cargas de entrada de manipueira. A fase acidogênica foi realizada em processo de batelada e a metanogênica em biodigestor anaeróbio de fluxo ascendente e leito fixo com alimentação contínua. As cargas orgânicas de entrada variaram de 0,33 a 8,48 gDQO (Demanda Química de Oxigênio)/L.dia. A maior porcentagem de metano encontrada foi de 80,9%, com carga orgânica de 0,33g e a menor, 56,8%, obtida com 8,49gDQO/L.d. A maior taxa de redução de DQO foi de 88,89%, obtida com carga orgânica de 2,25g e a menor, 54,95%, com 8,48gDQO/L.d. Analisando-se os dados apresentados verificou-se que a biodigestão anaeróbia pode ser conduzida, pelo menos, de duas maneiras, ou seja, para produção de energia (metano) ou para redução de carga orgânica. A carga orgânica de entrada deve ser calculada em função do objetivo a ser alcançado com a biodigestão anaeróbia.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This work describes fructose oligosaccharide (FOS) production by the immobilized mycelia (IM) of a strain of Aspergillus japonicus, isolated from soil. The microorganism was inoculated into 50 mi of medium composed of sugar cane molasses (5.0% of total sugars); yeast powder; 2.0%; K2HPO4, 0.5%; NaNO3, 0.2%; MgSO4. 7H(2)O, 0.05%; KCl, 0.05%, final pH 5.0, and the flasks were agitated in an orbital shaker at 200 rpm for 60 h, at 30 degrees C. The beta-fructofuranosidase activity (Uf), transfructosylating activity (Ut), hydrolyzing activity (Uh), and FOS production were analyzed by high performance liquid chromatography. FOS production was performed in a batch process in a 2-l jar fermenter by IM in calcium alginate beads. The optimum pH and temperature were 5.0-5.6 and 55 degrees C, respectively No loss of activity was observed when the mycelium was maintaned at 60 degrees C for 60 min. Maximum production was obtained using 5.75% (cellular weight/volume) of mycelia (122.4 Ut g(-1)) and 65% sucrose solution (w:v) for 4 h of reaction when the final product reached 61.28% of fetal FOS containing GF(2) (30.56%), GF(3) (26.45%), GF(4) (4.27%), sucrose (9.6%) and glucose (29.10%). In the assay conditions, 23 batches were performed without loss of activity of the IM, showing that the microorganism and the process utilized have potential for industrial applications. (C) 1998 Elsevier B.V. Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Brazil has become a great producer of bioethanol using sugarcane as the basic raw material. Fed-batch process and continuous process are used. Biogas generation from vinasse, production of dry yeast, and autolyzed bagasse for animal feed are making the ethanol production less polluting and more profitable. Bagasse surplus has also been converted into electrical energy. Another alternative use for bioethanol is its conversion to petrochemical derivatives. Up to the present, however, this conversion has been carried out on only a small scale by the industry.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This work describes the synthesis and characterization of 2-aminothiazole modified silica gel (SiAT), and the results of a study of the adsorption and pre-concentration (in batch and using a flow-injection system coupled to an absorption atomic spectrometer) of Cu(II), Ni(II) and Pb(II) in aqueous medium. The adsorption capacities for each metal ions in mmol g -1 were: Cu(II)= 1.18, Ni(II)= 1.15 and Pb(II)= 1.10. The results obtained in the flow experiments showed a recovery of practically 100% of the metal ions adsorbed in a mini-column packed with 100 mg of SiAT, using 100 μL of 2.0 mol L -1 HCl solution as eluent. The sorption-desorption of the metal ions made possible the application of a flow-injection system for the pre-concentration and quantification by FAAS of metal ions at trace level in natural water samples digested and not digest by an oxidizing UV photolysis.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Methylamine and sulfate are compounds commonly found in wastewaters. This study aimed to determine the methanogenic potential of anaerobic reactors containing these compounds and to correlate it with their microbial communities. Batch experiments were performed at different methylamine/sulfate ratios of 0.71, 1.26 and 2.18 (with respect to mass concentration). Control and experimental runs were inoculated with fragmented granular sludge. The maximum specific methane formation rates were approximately 2.3 mmol CH4 L-1 g TVS-1 day-1 for all conditions containing methylamine, regardless of sulfate addition. At the end of the experiment, total ammonium-N and methane formation were proportional to the initial concentrations of methylamine. In the presence of methylamine and sulfate, Firmicutes (46%), Deferribacteres (13%) and Proteobacteria (12%) were the predominant phyla of the Bacteria domain, while Spirochaetes (40%), Deferribacteres (17%) and Bacteroidetes (16%) predominated in the presence of methylamine only. There was no competition for methylamine between sulfate-reducing bacteria and methanogenic archaea.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work evaluates the potential of a Sargassum biomass for the biosorption of Sm(III) and Pr(III) using synthetic solutions. Under selected experimental conditions (excess of sorbent), the biosorption kinetics were fast: 30-40 min were sufficient for the complete recovery of the metals. The kinetic profiles were modeled using the pseudo-second order rate equation. The second objective of this study was to evaluate the possibility to separate these metals. Biosorption isotherms and uptake kinetics for the two metals (in binary component solutions) were almost overlapped. The biomass did not show significant selectivity for any of these two metals, in batch reactor. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Separation and purification of lanthanum from other rare-earth (RE) elements are highly complex processes comprising several steps of extraction using organic solvents or ion-exchange resins at high costs. In order to study the biosorption process as an alternative for conventional lanthanum recovery, this work investigated some basic aspects of lanthanum-Sargassum biomass interactions in batch equilibrium contact. The dynamics of biosorption, influence of pH, and the desorption of this RE were investigated. Maximum biosorption coefficient (q(max)) increased from 0.05 at pH 2 to 0.53 mmol g(-1) at pH 5 for lanthanum sulfate. When lanthanum chloride was used, a higher q(max) at pH 5 (0.73 mmol g(-1)) was observed as compared to the sulfate salt (q(max) = 0.53 mmol g(-1)) at the same pH. Adsorption and desorption curves pointed out a complete recovery of metal adsorbed in the Sargassum fluitans biomass, showing a reversibility of this process and indicating the potential of biosorption for lanthanum removal and recovery. (C) 2002 Elsevier B.V. B.V. All rights reserved.