37 resultados para Barium calcium titanate

em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Barium zirconium titanate (BZT) ceramics were prepared by mixed oxide method. X-ray diffraction showed the presence of a single phase while Raman scattering confirmed structural transitions as a function of different Zr/Ti ratio. The addition of Zr strongly influenced the crystal structure and electrical properties of the ceramics. A typical hysteresis loops were observed for all investigated compositions. BZT ceramics with 15 mol% Zr have shown a ferroelectric to paraelectric transition at around 77 degrees C. (C) 2007 Published by Elsevier B.V.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ultasonic spray pyrolysis (SP) has been investigated for the production of the barium strontium titanate (BST) powders from the polymeric precursors. The processing parameters, such as flux of aerosol and temperature profile inside the furnace, were optimized to obtain single phase BST. The powders were characterized by the methods of X-ray diffraction analysis, SEM, EDS and TEM. The obtained powders were submicronic, consisting of spherical, polycrystalline particles, with internal nanocrystalline structure. Crystallite size of 10 nut, calculated using Rietveld refinement, is in a good agreement with results of HRTEM. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Vanadium modified barium zirconium titanate ceramics Ba(Zr(0.10)Ti(0.90))O(3):2V (BZT:2V) were prepared from the mixed oxide method. According to X-ray diffraction analysis, addition of vanadium leads to ceramics free of secondary phases. Electrical characteristics reveal a dielectric permittivity at around 15,000 with low dielectric loss with a remnant polarization (P(r))of 8 mu C/cm(2) at 2 kV/cm. From the obtained results, we assume that vanadium substitution in the BZT lattice affects dielectric characteristics due to the electron-relaxation-mode in which carriers (polarons, protons, and so on) are coupled with existing dielectric modes. (C) 2009 Published by Elsevier B.V.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BaTiO3 is usually doped to achieve the temperature stability required by device applications, as well as to obtain a large positive temperature coefficient anomaly of resistivity (PTCR). Uniform distribution of dopants among the submicron dielectric particles is the key for optimal control of grain size and microstructure to maintain a high reliability. The system Ba0.84Pb0.16TiO3 was synthesized from high purity BaCO3, TiO2, PbO oxide powders as raw materials. Sb2O3, MnSO4 and ZnO were used as dopants and Al2O3, TiO2 and SiO2 as grain growth controllers. Phase composition was analyzed by using XRD and the microstructure was investigated by SEM. EDS attached to SEM was used to analyze phase composition specially related to abnormal grain growth. Electrical resistivities were measured as a function of temperature and the PTCR effect characterized by an abrupt increase on resistivity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pure barium strontium titanate powder, with Ba/Sr ratio of 80/20 was prepared by the polymeric precursor method (also called Pechini process). The powder was obtained after a calcination at 800 degreesC for 8 h and characterized by XRD, IR, BET and SEM. The requirements to avoid barium carbonate as a secondary phase are presented and discussed in detail. (C) 2003 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Barium strontium titanate (Ba0.65Sr0.35TiO3) nanocrystalline thin films, which were produced by the soft chemical method, were crystallized at low temperature using a domestic microwave oven. A SiC susceptor were used to absorb the microwave energy and rapidly transfer the heat to the film. Low microwave power and short time have been used. The films obtained are crack-free, well-adhered, and fully crystallized. The microstructure displayed a polycrystalline nature with nanograin size. The metal-BST-metal structure of the thin films treated at 700 degrees C show food electric properties. The ferroelectric nature of the BST35 thin film was indicated by buttertly- shaped C-V curves. The capacitance-frequency curves reveal that the dielectric constant may reach a value up to 800 at 100kHz. The dissipation factor was 0.01 at 100kHz. The charge storage density as function of applied voltage graph showed that the charge storage densities are suitable for use in trench type 64 Mb ( 1-5 mu C/cm(2) and 265 Mb (2-11 mu C/cm(2)) DRAMs. (C) 2007 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bi4Ti4O15 [BBT], a member of Aurivillius bismuth-based layer-structure perovskites, was prepared from stoichiometric amounts of BaTiO3 [BT] and Bi4Ti3O12 [BIT] obtained via mechanochemical synthesis. Mechanochemical synthesis was performed in air atmosphere in a planetary ball mill. BBT ceramics were sintered at 1100C for 4 h without pre-calcination step within heating rate 10C/min. The formation of phase and crystal structure of BT, BIT and BBT were approved using X-ray analysis. The morphology of obtained powders and microstructure were exhamined using scanning electron microscopy. The electrical properties of sintered samples were carried out.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study describes observation of piezoelectric response of Ba(Zr 0.10Ti 0.90.O3 ceramics modified with tungsten (BZT:2W) by the mixed oxide method. According to X ray diffraction analysis, the ceramics are free of secondary phases. Transmission electron microscopy (TEM) analyses reveals the absence of segregates in the grain boundaries indicates the high solubility of WO3 in the BZT matrix. The dielectric permittivity measured at a frequency of 10 KHz was equal to 6500 with dieletric loss of 0.15. A typical hysteresis loop was observed at room temperature. Electron Paramagnetic Resonance (EPR) analyses reveals that substitution of W6+ by Ti4+ causes distortion in the crystal structure changing lattice parameter. Polarization reversal was investigated by applying dc voltage through a conductive tip during the area scanning. Piezoelectric force microscopy images reveals that in-plane response may not change its sign upon polarization switching, while the out-of-plane response does. Copyright © 2010 American Scientific Publishers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dielectric spectroscopy was used in this study to examine polycrystalline vanadium and tungstendoped BaZr 0.1Ti 0.90O 3 (BZT10:2V and BZT10:2W) ceramics obtained by the mixed oxide method. According to X-ray diffraction analyses, addition of vanadium and tungsten lead to ceramics free of secondary phases. SEM analyses reveal that both dopants result in slower oxygen ion motion and consequently lower grain growth rate. Temperature dependence dielectric study showed normal ferroelectric to paraelectric transition well above the room temperature for the BZT10 and BZT10:2V ceramics. However, BZT10:2W ceramic showed a relaxor-like behavior near phase transition characterized by the empirical parameter γ. Piezoelectric force microscopy images reveals that the piezoelectric coefficient is strongly influenced by type of donor dopant suggesting promising applications for dynamic random access memories and data-storage media. Copyright © 2010 American Scientific Publishers All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The polyvinyl alcohol (PVA)/barium zirconium titanate Ba[Zr0.1Ti0.9]O3 (BZT) polymer-ceramic composites with different volume percentage are obtained from solution mixing and hot-pressing method. Their structural and electrical properties are characterized by X-ray diffraction (XRD), Rietveld refinement, cluster modeling, scanning electron microscope and dielectric study. XRD patterns of PVA/BZT polymer-ceramics composite (with 50% volume fractions) indicate no obvious differences than the XRD patterns of pure BZT which shows that the crystal structure is still stable in the composite. The scanning electron micrograph indicates that the BZT ceramic is dispersed homogeneously in the polymer matrix without agglomeration. The dielectric permittivity (ε r) and the dielectric loss (tan δ) of the composites increase with the increase of the volume fraction of BZT ceramic. Theoretical models are employed to rationalize the dielectric behavior of the polymer composites. The dielectric properties of the composites display good stability within a wide range of temperature and frequency. The excellent dielectric properties of these polymer-ceramic composites indicate that the BZT/PVA composites can be a candidate for embedded capacitors. © 2013 Elsevier B.V.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the current article, we studied the effect of yttrium [Y3+] ions' substitution on the structure and electric behavior of barium zirconate titanate (BZT) ceramics with a general formula [Ba1-x Y 2x/3](Zr0.25Ti0.75)O3 (BYZT) with [x = 0, 0.025, 0.05] which were prepared by the solid-state reaction method. X-ray diffraction patterns indicate that these ceramics have a single phase with a perovskite-type cubic structure. Rietveld refinement data confirmed [BaO 12], [ZrO6], [TiO6], [YO6] clusters in the cubic lattice. The Y3+ ions' effects on the electric conductivity behavior of BZT ceramics as a function of temperature and frequency are described, which are based on impedance spectroscopy analyses. The complex impedance plots display a double semicircle which highlights the influences of grain and grain boundary on the ceramics. Impedance analyses showed that the resistance decreased with the increasing temperature and resulted in a negative temperature coefficient of the resistance property in all compositions. Modulus plots represent a non-Debye-type dielectric relaxation which is related to the grain and grain boundary as well as temperature-dependent electric relaxation phenomenon and an enhancement in the mobility barrier by Y3+ ions. Moreover, the electric conductivity increases with the replacement of Ba 2+ by Y3+ ions may be due to the rise in oxygen vacancies. © 2013 The Minerals, Metals & Materials Society and ASM International.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)