104 resultados para Atomic clocks.
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
The Brazilian Network for Continuous Monitoring of GPS - RBMC, since its foundation in December of 1996, has been playing an essential role for the maintenance and user access of the fundamental geodetic frame in the country,. It provides users with a direct link to the Brazilian Geodetic System - SGB. Its role has become more relevant with the increasing use of space navigation technology in the country. Recently, Brazil adopted a new geodetic system, SIRGAS2000, in February 2005, fully compatible with GNSS technology. The paper provides an overview of the recent modernization phases the RBMC network has undergone highlighting its future steps. From its current post-mission mode, the RBMC will evolve into a real-time network, providing real-time data and real-time correction to users. The network enhanced with modern GPS receivers and the addition of atomic clocks will be used to compute WADGPS-type corrections to be transmitted, in real time, to users in Brazil and surrounding areas. It is estimated that users will be able to achieve a horizontal accuracy around 0.5 m (1σ) in static and kinematic positioning and better for dual frequency users. The availability of the WADGPS service will allow users to tie to the new SIRGAS2000 system in a more rapid and transparent way for positioning and navigation applications. It should be emphasized that support to post-mission static positioning will continue to be provided to users interested in higher accuracy levels. In addition to this, a post-mission Precise Point Positioning (PPP) service will be provided based on the one currently provided by the Geodetic Survey Division of NRCan (CSRS-PPP). The modernization of the RBMC is under development based on a cooperation signed at the end of 2004 with the University of New Brunswick, supported by the Canadian International Development Agency and the Brazilian Cooperation Agency. The Geodetic Survey Division of NRCan is also participating in this modernization effort under the same project.
Resumo:
The Brazilian Network for Continuous Monitoring of GPS - RBMC, since its foundation in December of 1996, has been playing an essential role for the maintenance and user access of the fundamental geodetic frame in the country. It provides to users a direct link to the Brazilian Geodetic System. Its role has become more relevant with the increasing use of space navigation technology in the country. Recently, Brazil adopted a new geodetic frame, SIRGAS2000, in February 2005, fully compatible with GNSS technology. The paper provides an overview of the recent modernization phases the RBMC network has undergone highlighting its future steps. From its current post-mission mode, the RBMC will evolve into a real-time network, providing real-time data and real-time correction to users. The network enhanced with modern GPS receivers and the addition of atomic clocks will be used to compute WADGPS-type corrections to be transmitted, in real time, to users in Brazil and surrounding areas. It is estimated that users will be able to achieve a horizontal accuracy around 0.5 m (1 σ) in static and kinematic positioning and better for dual frequency users. The availability of the WADGPS service will allow users to tie to the new SIRGAS2000 frame in a more rapid and transparent way for positioning and navigation applications. It should be emphasized that support to post-mission static positioning, will continue to be provided to users interested in higher accuracy levels. In addition to this, a post-mission Precise Point Positioning (PPP) service will be provided based on the one currently provided by the Geodetic Survey Division of NRCan (CSRS-PPP). The modernization of the RBMC is under development based on a cooperation signed at the end of 2004 with the University of New Brunswick, supported by the Canadian International Development Agency and the Brazilian Cooperation Agency. The Geodetic Survey Division of NRCan is also participating in this modernization effort under the same project. © Springer-Verlag Berlin Heidelberg 2009.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The adhesion force between an atomic force microscope (AFM) tip and sample surfaces, mica and quartz substrates, was measured in air and water. The force curves show that the adhesion has a strong dependence on both the surface roughness and the environmental conditions surrounding the sample. The variability of the adhesion force was examined in a series of measurements taken at the same point, as well as at different places on the sample surface. The adhesion maps obtained from the distribution of the measured forces indicated regions contaminated by either organic compounds or adsorbed water. Using simple mathematical expressions we could quantitatively predict the adhesion force behavior in both air and water. The experimental results are in good agreement with theoretical calculations, where the adhesion forces in air and water were mostly associated with capillary and van der Waals forces, respectively. A small long-range repulsive force is also observed in water due to the overlapping electrical double-layers formed on both the tip and sample surfaces.
Resumo:
The influence of small amounts of bovine serum albumin (BSA) (nM concentration) on the lateral organization of phospholipid monolayers at the air-water interface and transferred onto solid substrates as one-layer Langmuir-Blodgett (LB) films was investigated. The kinetics of adsorption of BSA onto the phospholipid monolayers was monitored with surface pressure isotherms in a Langmuir trough, for the zwitterionic dipalmitoylphosphatidyl ethanolamine (N,N-dimethyl-PE) and the anionic dimyristoylphosphatidic acid (DMPA). A monolayer of N,N-dimethyl-PE or DMPA incorporating BSA was transferred onto a solid substrate using the Langmuir-Blodgett technique. Atomic force microscopy (AFM) images of one-layer LB films displayed protein-phospholipid domains, whose morphology was characterized using dynamic scaling theories to calculate roughness exponents. For DMPA-BSA films the surface is characteristic of self-affine fractals, which may be described with the Kardar-Parisi-Zhang (KPZ) equation. on the other hand, for N,N-dimethyl-PE-BSA films, the results indicate a relatively flat surface within the globule. The height profile and the number and size of globules varied with the type of phospholipid. The overall results, from kinetics of adsorption on Langmuir monolayers and surface morphology in LB films, could be interpreted in terms of the higher affinity of BSA to the anionic DMPA than to the zwitterionic N,N-dimethyl-PE. Furthermore, the effects from such small amounts of BSA in the monolayer point to a cooperative response of DMPA and N,N-dimethyl-PE monolayers to the protein. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
A tungsten carbide coating on the integrated platform of a transversely heated graphite atomizer was used as a modifier for the direct determination of Se in soil extracts by graphite furnace atomic absorption spectrometry. Diethylenetriaminepentaacetic acid (0.0050 mol L-1) plus ammonium hydrogencarbonate (1.0 mol L-1) extracted predominantly available inorganic selenate from soil. The formation of a large amount of carbonaceous residue inside the atomizer was avoided with a first pyrolysis step at 600 degreesC assisted by air during 30 s. For 20 muL of soil extracts delivered to the atomizer and calibration by matrix matching, an analytical curve (10.0-100 mug of L-1) with good linear correlation (r = 0.999) between integrated absorbance and analyte concentration was established. The characteristic mass was similar to63 pg of Se, and the lifetime of the tube was similar to750 firings. The limit of detection was 1.6 mug L-1, and the relative standard deviations (n = 12) were typically <4% for a soil extract containing 50 mug of L-1. The accuracy of the determination of Se was checked for soil samples by means of addition/recovery tests. Recovery data of Se added to four enriched soil samples varied from 80 to 90% and indicated an accurate method.
Resumo:
We imaged pores on the surface of the cell wall of three different industrial strains of Saccharomyces cerevisiae using atomic force microscopy. The pores could be enlarged using 10 mM diamide, an SH residue oxidant that attacks surface proteins. We found that two strains showed signs of oxidative damage via changes in density and diameter of the surface pores. We found that the German strain was resistant to diamide induced oxidative damage, even when the concentration of the oxidant was increased to 50 mM. The normal pore size found on the cell walls of American strains had diameters of about 200nm. Under conditions of oxidative stress the diameters changed to 400nm.This method may prove to be a useful rapid screening process (45-60 min) to determine which strains are oxidative resistant, as well as being able to screen for groups of yeast that are sensitive to oxidative stress. This rapid screening tool may have direct applications in molecular biology (transference of the genes to inside of living cells) and biotechnology (biotransformations reactions to produce chiral synthons in organic chemistry.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The aim of the study was to verify the influence of surface sealants on the surface roughness of resin composite restorations before and after mechanical toothbrushing, and evaluate the superficial topography using atomic force microscope. Five surface sealers were used: Single Bond, Opti Bond Solo Plus, Fortify, Fortify Plus and control, without any sealer agent. The lowest values of surface roughness were obtained for control, Single Bond and Fortify groups before toothbrushing. Fortify and Fortify Plus were the sealer agents that support the abrasive action caused by the toothbrushing although Fortify Plus group remained with high values of surface roughness. The application of specific surface sealants could be a useful clinical procedure to maintain the quality of resin-based composite restorations. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
This in vitro study evaluated the marginal gap at the composite tooth/resin interface in class V cavities under the influence of two insertion techniques and a curing system by means of atomic force microscopy (AFM). Forty enamel and dentin cavities were prepared on the buccal surface in bovine teeth with quadratic forms measuring 2 mm X 2 mm and depth of 1.5 mm. The teeth were then divided into four groups: group A, 10 cavities were restored in one increment, light cured by halogen light; group B, 10 cavities filled with bulk filling, light cured by the light emitting diodes (LED); group C, 10 cavities were restored by the incremental technique, light cured by halogen light; group D, 10 cavities were restored by the incremental technique, light cured by the LED. The teeth underwent the polishing procedure and were analyzed by AFM for tooth/restoration interface evaluation. The data were compared between groups using the nonparametric Kruskall-Wallis and Mann-Whitney tests (p < 0.05). The results showed a statistically significant difference between groups A and B and groups A and C. It was concluded that no insertion and polymerization technique was able to completely seal the cavity.
Resumo:
Cellulose chemically modified with p-aminobenzoic groups, abbreviated as Cel-PAB, was used for preconcentration of copper, iron, nickel, and zinc from ethanol fuel, normally used in Brazil as engine fuel. The surface characteristics and the surface area of the cellulose were obtained before and after chemical modification using FT-IR, elemental analysis, and surface area analysis (B.E.T.). The retention and recovery of the analyte elements were studied by applying batch and column techniques.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
In this work we rederive the Lamb-Retherford energy shift for an atomic electron in the presence of a thermal radiation. Using the Dalibard, Dupont-Roc and Cohen-Tannoudji (DDC) formalism, where physical observables are expressed as convolutions of suitable statistical functions, we construct the electromagnetic field propagator of thermo field dynamics in the Coulomb gauge in order to investigate finite temperature effects on the atomic energy levels. In the same context, we also analyze the problem of the ground state stability.
Resumo:
We study the quantum coherent tunneling dynamics of two weakly coupled atomic-molecular Bose-Einstein condensates (AMBEC). A weak link is supposed to be provided by a double-well trap. The regions of parameters where the macroscopic quantum localization of the relative atomic population occurs are revealed. The different dynamical regimes are found depending on the value of nonlinearity, namely, coupled oscillations of population imbalance of atomic and molecular condensate, including irregular oscillations regions, and macroscopic quantum self trapping regimes. Quantum means and quadrature variances are calculated for population of atomic and molecular condensates and the possibility of quadrature squeezing is shown via stochastic simulations within P-positive phase space representation method. Linear tunnel coupling between two AMBEC leads to correlations in quantum statistics.