14 resultados para Aromaticity
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
The influence of structural features of tropical river humic substances (HS) on their capability to reduce mercury(II) in aqueous solutions was studied. The HS investigated were conventionally isolated from Rio Negro water-Amazonas State/Brazil by means of the collector XAD 8. In addition, the isolated HS were on-line fractionated by tangential-flow multistage ultrafiltration (nominal molecular-weight cut-offs: 100, 50, 30, 10, 5 kDa) and characterized by potentiometry and UV/VIS spectroscopy. The reduction of Hg(II) ions to elemental Hg by size-fractions of Rio Negro HS was assessed by cold-vapor AAS (CVAAS). UV/VIS spectrometry revealed that the fractions of high molecular-size (F-1 > 100 kDa and F-2: 50-100 kDa) have a higher aromaticity compared to the fractions of small molecular-size (F-5: 5-10 kDa, F-6: < 5 kDa). In contrast, the potentiometric study showed different concentration of functional groups in the studied HS fractions. The reduction of Hg(II) by aquatic HS fractions at pH 5 proceeded in two steps (I, II) of slow first order kinetics (t(1/2) of I: 160 min, t(1/2) of II: 300 min) weakly influenced by the molecular-size, in contrast to the differing degree of Hg(II) reduction (F-5 > F-2 > > F-1 > F-3 > F-4 > > F-6). Accordingly, Hg(II) ions were preferably reduced by HS molecules having a relatively high ratio of phenolic/carboxylic groups and a small concentration of sulfur. From these results a complex 'competition' between reduction and complexation of mercury(II) by aquatic HS occurring in tropical rivers such as the Rio Negro can be suggested. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Laser-induced fluorescence (LIF) spectroscopy has been proposed as new method for determining the degree of humification of organic matter (OM) in whole soils. It can be also used to analyze the OM in whole soils containing large amounts of paramagnetic materials, and which are neither feasible to Electron Paramagnetic Resonance (EPR) nor to C-13 Nuclear Magnetic Resonance (NMR) spectroscopy. In the present study, 3 LIF spectroscopy was used to investigate the OM in a Brazilian Oxisol containing high concentration of Fe+3. Soil samples were collected from two areas under conventional tillage (CT), two areas under no-till management (NT) and from a non-cultivated (NC) area under natural vegetation. The results of LIF spectroscopic analysis of the top layer (0-5 cm) of whole soils showed a less aromatic OM in the non-cultivated than in the cultivated soils. This is consistent with data corresponding to HA samples extracted from the same soils and analyzed by EPR, NMR and conventional fluorescence spectroscopy. The OM of whole soils at 5-10 and 10-20 cm depth was also characterized by LIF spectroscopy.Analysis of samples of NT and NC soils showed a higher OM aromatic content at depth. This is a consequence of the accumulation of plant residues at the soil surface in quantities that are too large for microorganisms to metabolize fully, thus, resulting in less aromatic or less hurnified humic substances. In deeper soil layers, the input of residues was lower and further decomposition of humic substances by microorganisms continued, and the aromaticity and degree of humification increased with soil depth. This data indicates that the gradient of humification of OM in the NT soil was similar to those observed in natural soils. Nevertheless, the degree of humification of the OM in the soils under no-till management varied less than that corresponding to non-cultivated soils. This may be because the former have been managed under these practices for only 5 years, in contrast to the continuous humification process occurring in the natural soils. on the other band, LIF spectroscopic analysis of the CT soils showed less pronounced changes or no change in the degree of humification with depth. This indicates that the ploughing and harrowing involved in CT lead to homogenization of the soil and thereby also of the degree of humification of OM throughout the profile. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
The main pool of dissolved organic carbon in tropical aquatic environments, notably in dark-coloured streams, is concentrated in humic substances (HS). Aquatic HS are large organic molecules formed by micro-biotic degradation of biopolymers and polymerization of smaller organic molecules. From an environmental point of view, the study of metal-humic interactions is often aimed at predicting the effect of aquatic HS on the bioavailability of heavy metal ions in the environment. In the present work the aquatic humic substances (HS) isolated from a dark-brown stream (located in an environmental protection area near Cubatao city in São Paulo-State, Brazil) by means of the collector XAD-8 were investigated. FTIR studies showed that the carboxylic carbons are probably the most important binding sites for Hg(II) ions within humic molecules. C-13-NMR and H-1-NMR studies of aquatic HS showed the presence of constituents with a high degree of aromaticity (40% of carbons) and small substitution. A special five-stage tangential-flow ultrafiltration device (UF) was used for size fractionation of the aquatic HS under study and for their metal species in the molecular size range 1-100 kDa (six fractions). The fractionation patterns showed that metal traces remaining in aquatic HS after their XAD-8 isolation have different distributions. Generally, the major percentage of traces of Mn, Cd and Ni (determined by ICP-AES) was preferably complexed by molecules with relatively high molecular size. Cu was bound by fractions with low molecular size and Co showed no preferential binding site in the various humic fractions. Moreover, the species formed between aquatic HS and Hg(II), prepared by spiking (determined by CVAAS), appeared to be concentrated in the relatively high molecular size fraction F-1 (> 100 kDa).
Resumo:
A study of the characteristics and distribution of the soil humus fractions in representative ecosystems of central Brazil was carried out with special emphasis on the comparison between the soils under virgin vegetation-Cerrado-and those subjected to cultivation. In spite of the contrasted vegetation and cultural practices in the sites studied, the soil humus showed analogous characteristics: there was a negligible amount of plant residues, the humic and fulvic acids amounted to approximately 70% of the total organic carbon, and about 40% of these humic substances were in extremely stable association with the soil mineral fraction, the HCl-HF treatment being required for their extraction. The stability of such organo-mineral complexes increased slightly in the cultured sites. The study of the humic acid fraction showed increased oxidation and aromaticity in most of the cultivated sites: the lowest values for the IR alkyl vibrations and H/C atomic ratios and the highest ones for the optical density at 465 nm were observed in sites transformed into orchards, whereas the above changes were small in those used as pasture. The 14C NMR spectra confirmed that the proportion of polyalkyl structures decreased in the humic acids of soils subjected to cultivation, as opposed to that of carboxyl groups. In spite of the high stability inferred for the organic matter throughout the wide area examined, the samples from the original Cerrado as well as from those transformed into pastures showed, in laboratory conditions, higher mineralization rates than those from the sites subjected to cultivation. This is partly attributed to the decreased proportions of extractable humic substances in the latter. © 1992.
Resumo:
In the present work, aquatic humic substances (HS) were extracted by use of adsorbent XAD 8 and the acid humic fraction (AH) was separated throught acidification. After being purified by Hyphan resin and dialyze, the aquatic AH was characterized using Fourier-transform infrared spectroscopy and elemental analysis. The influence of the aquatic HA and electrolyte concentrations, pH and aquatic AH-metal complexation time on the conformation was investigated using UV/Vis spectroscopic studies, employing the equation suggested by Doty and Steiner. The results indicated that the acid humic flexible macromolecule assumes a condensed form at acid and alkaline pH. Other factors favoring condensed conformations are longer metal complexation time (ageing) and higher aquatic AH and electrolyte concentrations. Thus considering the strong influence of the investigated parameters in the structural conformation of the humic macromolecule, we conclude that studies using UV/Vis spectroscopy to estimate the concentration, aromaticity, humification degree of the aquatic AH and so on, require rigorous control over the experimental conditions employed to provide a correct interpretation of the analytical results. ©2006 Sociedade Brasileira de Química.
Resumo:
Pós-graduação em Química - IBILCE
Resumo:
This study had as main objectiveto evaluate the influence of AHS obtained from an area under sugarcane cultivation on the dynamics of chromium species (Cr(III) and Cr(VI)). Was studied complexing capacity (CC) with the AHS of chromium species and these were characterized using UV/Vis spectrophotometry, molecular fluorescence, elemental analysis and infrared. AHS with and without fractionation showed a greater aromaticity degree and a predominance of humic acids, and the E4/E6 and E2/E4 ratios suggested aromatic rings and a greater contribution from plants, which indicates lignin structures. The highest CCs were observed for the AHS fractionated, being fraction with molecular-size < 10 kDa and 10-30 kDa showed the highest ability to complex Cr(III) and Cr(VI) ions, respectively. These results are corroborating with C/H/N and UV/Vis data, where we can conclude that the AHS without fractionation had the greatest aromaticity and a predominance of humic acids in their structure.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Although many studies have shown that soil solution chemistry can be a reliable indicator of biogeochemical cycling in forest ecosystems, the effects of litter manipulations on the fluxes of dissolved elements in gravitational soil solutions have rarely been investigated. We estimated the fluxes of NH4-N, NO3-N, K, Ca, Mg, Na, Cl, dissolved organic nitrogen (DON) and dissolved organic carbon (DOC) over the first two years after re-planting Eucalyptus trees in the coastal area of Congo. Two treatments were replicated in two blocks after clear-cutting 7-year-old stands: in treatment R, all the litter above the mineral soil was removed before planting, and in a double slash (DS) treatment, the amount of harvest residues was doubled. The soil solutions were sampled down to a depth of 4 m and the water fluxes were estimated using the Hydrus 1D model parameterized from soil moisture measurements in 4 plots. Isotopic and spectroscopic analytical techniques were used to assess the changes in dissolved organic matter (DOM) properties throughout the transfer in the soil. The first year after planting, the fluxes of NH4-N, K, Ca, Mg, Na, Cl and DOC in the topsoil of the DS treatment were 2-5 times higher than in R, which showed that litter was a major source of dissolved nutrients. Nutrient fluxes in gravitational solutions decreased sharply in the second year after planting, irrespective of the soil depth, as a result of intense nutrient uptake by Eucalyptus trees. Losses of dissolved nutrients were noticeably low in these Eucalyptus plantations despite a low cation exchange capacity, a coarse soil texture and large amounts of harvest residues left on-site at the clear cut in the DS treatment. All together, these results clarified the strong effect of litter manipulation observed on eucalypt growth in Congolese sandy soils. DOM fluxes, as well as changes in delta C-13, C:N and aromaticity of DOM throughout the soil profile showed that the organic compounds produced in the litter layer were mainly consumed by microorganisms or retained in the topsoil. Below a depth of 15 cm, most of the DOC and the DON originated from the first 2 cm of the soil and the exchanges between soil solutions and soil organic matter were low. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)