64 resultados para Amorphous silicon thin film

em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thin films were deposited from hexamethyldisiloxane (HMDSO) in a glow discharge supplied with radiofrequency (rf) power. Actino-metric optical emission spectroscopy was used to follow trends in the plasma concentrations of the species SiH (414.2 nm), CH (431.4 nm), CO (520.0 nm), and H (656.3 nm) as a function of the applied rf power (range 5 to 35 W). Transmission infrared spectroscopy (IRS) was employed to characterize the molecular structure of the polymer, showing the presence of Si-H, Si-O-Si, Si-O-C and C-H groups. The deposition rate, determined by optical interferometry, ranged from 60 to 130 nm/min. Optical properties were determined from transmission ultra violet-visible spectroscopy (UVS) data. The absorption coefficient α, the refractive index n, and the optical gap E04 of the polymer films were calculated as a function of the applied power. The refractive index at a photon energy of 1 eV varied from 1.45 to 1.55, depending on the rf power used for the deposition. The absorption coefficient showed an absorption edge similar to other non-crystalline materials, amorphous hydrogenated carbon, and semiconductors. For our samples, we define as an optical gap, the photon energy E04 corresponding to the energy at an absorption of 104 cm-1. The values of E04 decreased from 5.3 to 4.6 as the rf power was increased from 5 to 35 W. © 1995.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Diverse amorphous hydrogenated carbon-based films (a-C:H, a-C:H:F, a-C:H:N, a-C:H:Cl and a-C:H:Si:O) were obtained by radiofrequency plasma enhanced chemical vapor deposition (PECVD) and plasma immersion ion implantation and deposition (PIIID). The same precursors were used in the production of each pair of each type of film, such as a-C:H, using both PECVD and PIIID. Optical properties, namely the refractive index, n, absorption coefficient, α, and optical gap, ETauc, of these films were obtained via transmission spectra in the ultraviolet-visible near-infrared range (wavelengths from 300 to 3300 nm). Film hardness, elastic modulus and stiffness were obtained as a function of depth using nano-indentation. Surface energy values were calculated from liquid drop contact angle data. Film roughness and morphology were assessed using atomic force microscopy (AFM). The PIIID films were usually thinner and possessed higher refractive indices than the PECVD films. Determined refractive indices are consistent with literature values for similar types of films. Values of ETauc were increased in the PIIID films compared to the PECVD films. An exception was the a-C:H:Si:O films, for which that obtained by PIIID was thicker and exhibited a decreased ETauc. The mechanical properties - hardness, elastic modulus and stiffness - of films produced by PECVD and PIIID generally present small differences. An interesting effect is the increase in the hardness of a-C:H:Cl films from 1.0 to 3.0 GPa when ion implantation is employed. Surface energy correlates well with surface roughness. The implanted films are usually smoother than those obtained by PECVD. ©2013 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work aims to obtain plasma thin film composites with hydrophobic/hydrophilic alternated regions, which are useful for the production of miniaturized mixers. These regions were acquired by two different strategies: either the codeposition of TEOS and HFE plasma thin films or the exposition of TEOS plasma films to ultraviolet radiation (UVA and UVC). These films were characterized by several chemical and physical techniques. The refractive indexes vary from 1.4 to 1.7; infrared and photoelectron spectroscopy detect Si-O-Si and CHn species. Silicone-like structures with high or low number of amorphous carbon microparticles and with fluorinated organic clusters were produced. Cluster dimensions were in the 1-5 mm range and they are made of graphite or COF (carbon/oxygen/fluorine) compounds. Scanning electron and optical microscopy showed rough surfaces. Water contact angles were 90º; however, for TEOS films that value changed after 6 hr of UVC exposure. Moreover, after UV exposure, organic polar compounds could be adsorbed in those films and water was not. The passive mixer performance was simulated using the FemLab 3.2® program and was tested with 20 nm thick films on a silicon wafer, showing the capacity of these films to be used in such devices.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A polymeric precursor method was used to synthesis PbTiO3 amorphous thin film processed at low temperature. The luminescence spectra of PbTiO3 amorphous thin films at room temperature revealed an intense single-emission band in the visible region, the visible emission band was found to be dependent on the thermal treatment history, Photoluminescence properties Versus different annealing temperatures were investigated. The experimental results (XRD, AFM, FL) indicate that the nature of photoluminescence (PL) must be related to the disordered structure of PbTiO3 amorphous thin films, Copyright (C) 2000 John Wiley & Sons, Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

CaBi2Nb2O9 (CBNO) thin films deposited on platinum coated silicon substrates by the polymeric precursor method exhibited good structural, dielectric, and piezoelectric characteristics. Capacitance-voltage measurements indicated good ferroelectric polarization switching characteristics. Remanent polarization and drive voltage values were 4.2 mu C/cm(2) and 1.7 V for a maximum applied voltage of 10 V. The film has a piezoelectric coefficient d(33) equal to 60 pm/V, current density of 0.7 mu A/cm(2), and Curie temperature of 940 degrees C. The polar-axis-oriented CBNO is a promising candidate for use in lead-free high Curie point in ferroelectric and piezoelectric devices. (c) 2006 American Institute of Physics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pt-modified SnO2 electrodes were prepared onto titanium substrates in the form of thin films of similar to2 mum at different temperatures in the range from 200 to 400degreesC. Surface morphology was examined by scanning electron microscopy (SEM). It was found that Pt-SnO2 sol-gel layers are significantly rough and have a low porosity. X-ray diffraction (XRD) studies showed that the films consist of Pt nanoparticles with average size varying from about 5 to 10 nm, depending on the preparation temperature, and amorphous tin oxide. X-ray photoelectron spectroscopy (XPS) was employed to determine the superficial composition of the electrodes and demonstrated the presence of Sn4+ in all the samples. XPS spectra of the Pt 4f electrons showed the presence of Pt in the zero-valence state as well as in ionic forms. The general electrochemical behavior was characterized by cyclic voltammetry in 1 mol l(-1) HClO4 and the electrocatalytic activity towards the oxidation of formaldehyde was investigated by potential sweeps and chronoamperometry. The results obtained show that the Pt-SnO2/Ti system exhibits a significant catalytic activity for the oxidation of formaldehyde, with an onset potential below 0.1 V. (C) 2004 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study evaluated the influence of deposition parameters for Si-based thin films using magnetron sputtering for coating zirconia and subsequent adhesion of resin cement. Zirconia ceramic blocks were randomly divided into 8 groups and specimens were either ground finished and polished or conditioned using air-abrasion with alumina particles coated with silica. In the remaining groups, the polished specimens were coated with Si-based film coating with argon/oxygen magnetron discharge at 8:1 or 20:1 flux. In one group, Si-based film coating was performed on air-abraded surfaces. After application of bonding agent, resin cement was bonded. Profilometry, goniometry, Energy Dispersive X-ray Spectroscopy and Rutherford Backscattering Spectroscopy analysis were performed on the conditioned zirconia surfaces. Adhesion of resin cement to zirconia was tested using shear bond test and debonded surfaces were examined using Scanning Electron Microscopy. Si-based film coating applied on air-abraded rough zirconia surfaces increased the adhesion of the resin cement (22.78 ± 5.2 MPa) compared to those of other methods (0-14.62 MPa) (p = 0.05). Mixed type of failures were more frequent in Si film coated groups on either polished or air-abraded groups. Si-based thin films increased wettability compared to the control group but did not change the roughness, considering the parameters evaluated. Deposition parameters of Si-based thin film and after application of air-abrasion influenced the initial adhesion of resin cement to zirconia. © 2013 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Amorphous silicon carbonitride (a-SiCN:H) films were synthesized by radiofrequency (RF) Plasma Enhanced Vapor Chemical Deposition (PECVD) using hexamethyldisilazane (HMDSN) as precursor compound. Then, the films were post-treated by Plasma Immersion Ion Implantation (PIII) in argon atmosphere from 15 to 60 min The hardness of the film enhanced after ion implantation, and the sample treated at 45 min process showed hardness greater than sixfold that of the untreated sample. This result is explained by the crosslinking and densification of the structure Films were exposed to oxygen plasma for determining of the etching rate. It decreased monotonically from 33 angstrom/min to 19 angstrom/min for the range of process time, confirming structural alterations. Hydrophobic character of the a-SiCN:H films were modified immediately after ion bombardment, due to incorporation of polar groups. However, the high wettability of the films acquired by the ion implantation was diminished after aging in air. Therefore, argon PIII made a-SiCN.H films mechanically more resistant and altered their hydrophobic character.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Amorphous silicon carbonitride (a-SiCN:H) films were deposited from hexamethyldisilazane (HMDSN) organic compounds via radio-frequency (RF) glow discharges. Afterwards the films were bombarded, from 15 to 60 min, with nitrogen ions using Plasma Immersion Ion Implantation (PIII) technique. X-ray photoelectron spectroscopy (XPS) showed that O-containing groups increased, while C-C and/or C-H groups decreased with treatment time. This result indicates chemical alterations of the polymeric films with the introduction of polar groups on the surface, which changes the surface wettability. In fact, the hydrophobic nature of a-SiCN:H films (contact angle of 100 degrees) was changed by nitrogen ion implantation and, and after aging in atmosphere air, all samples preserved the hydrophilic character (contact angle <80 degrees) independently of treatment time. The exposure of the films to oxygen plasma was performed to evaluate the etching rate, which dropped from 24% to 6% while the implantation time increased from 15 to 60 min. This data suggests that Pill increased the film structure strength, probably due to crosslinking enhancement of polymeric chains. Therefore, the treatment with nitrogen ions via Pill process was effective to modify the wettability and oxidation resistance of a-SiCN:H films. (C) 2014 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this work was production of tetraethoxysilane (TEOS) plasma polymerized thin films and optimization of their physical-chemical characteristic for sensor development. The films were analyzed using several techniques. It was possible to produce composites (graphite clusters imbibed by silicon oxide film) made from only one reactant (TEOS). Deposition rate can vary significantly, reaching a maximum of 30 nm/min; cluster formation and their size widely depending on deposition parameters. The film surface was hydrophobic but can be wetted by organic compounds, probably due to carbon radicals. These films are good candidates for sensor development.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An oxovanadium-salen complex (NAP-ethylene-bis(salicylidenciminato) oxovanadium) thin film deposited on a graphite-polyurethane electrode was investigated with regard to its potential use for detection of L-dopa in flow injection system. The oxovanadium(IV)/oxovanadium(V) redox couple of the modified electrode was found to mediate the L-dopa oxidation before its use in the FIA system. Experimental parameters, such as pH of the carrier solution, flow rate, sample volume injection and probable interferents were investigated. Under the optimized FIA conditions, the amperometric signal was linearly dependent on the L-dopa concentration over the range 1.0 x 10(-1) to 1.0 x 10(-4) mol L-1 (I-anodic, mu A) = 0.01 + 0.25 [L-dopa mu mol L-1]) with a detection limit (S/N = 3) of 8.0 x 10(-7) mol L-1 and a sampling frequency of 90 h(-1) was achieved. For a concentration of 1.0 x 10(-5) mol L-1 L-dopa, the R.S.D. of nine consecutive measurements was 3.7%. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The results of nanohardness measurements at a film surface and film-substrate interface are presented and discussed. An electron beam device was used to deposit a Ti film on a 304 stainless steel (304 SS) substrate. The diluted interface was obtained by thermal activated atomic diffusion. The. Ti film and Ti film-304 SS interface were analyzed by energy dispersive spectrometry and were observed using atomic force microscopy. The nanohardness of the Ti film-304 SS system was measured by a nanoindentation technique. The results showed the Ti film-304 SS interface had a higher hardness value than the Ti film and 304 SS substrate. The Ti film surface had a lower hardness due to the presence of a TiO2 thin layer.