5 resultados para Admittance spectroscopy

em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A sensor was fashioned to monitor the volume of nutrient in a solid substrate-based growth media by using electrochemical admittance spectroscopy. Several experimental parameters were investigated (i.e. The use of two- or three-electrode cells, the superficial area of the electrode, the amount of nutrient solution added to the growth media, and the influence of varying the dc and ac potential) to assess how these variables affect the admittance of the system. A linear correlation was observed between the maximum of the imaginary admittance and the volume of nutrient present. The response factor was 2.8 x 10(-5) S cm(-2) ml(-1) and the limit of detection (LOD) was 0.54 ml. The humidity of the growth media does not change the response of the nutrient toward the monitoring measurements. These results demonstrate that the volume of nutrient in this solid substrate-based growth media can be assessed using a ceramic sensor to measure the imaginary admittance. (C) 2002 Elsevier B.V. B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We report on electrical relaxation measurements of (1-x)NH4H2PO4-xTiO(2) (x = 0.1) composites by admittance spectroscopy, in the 40-Hz-5-MHz frequency range and at temperatures between 303 and 563 K. Simultaneous thermal and electrical measurements on the composites identify a stable crystalline phase between 373 and 463 K. The real part of the conductivity, sigma', shows a power-law frequency dependence below 523 K, which is well described by Jonscher's expression sigma' = sigma(0)(1 + (omega/omega(p))(n)), where sigma(0) is the dc conductivity, omega(p)/2 pi = f(p) is a characteristic relaxation frequency, and n is a fractional exponent between 0 and 1. Both sigma(0) and f(p) are thermally activated with nearly the same activation energy in the II region, indicating that the dispersive conductivity originates from the migration of protons. However, activation energies decrease from 0.55 to 0.35 eV and n increases toward 1.0, as the concentration of TiO2 nanoparticles increases, thus, enhancing cooperative correlation among moving ions. The highest dc conductivity is obtained for the composite x = 0.05 concentration, with values above room temperature about three orders of magnitude higher than that of crystalline NH4H2PO4 (ADP), reaching values on the order of 0.1 (Omega cm)(-1) above 543 K.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Lanthanum-lithium-sodium double chromates Li1-xNaxLa(CrO4)2 were prepared and analysed by means of admittance spectroscopy. Their a.c. conductivity parameters are correlated with structural details of high and low temperature forms of pure lanthanum-lithium double chromates. Lithium compounds show the lowest conductivity values and the highest activation energy for ion motion, while the sample Li0.5Na0.5La(CrO4)2 exhibits the highest conductivity 10-5 S cm-1 and the lowest activation energy 0.58 eV.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This text discusses about advantageous, powerful and limitations of admittance and dielectric spectroscopy in the characterization of polycrystalline semiconductors. In the context of polycrystalline semiconductors or dielectric materials, the admittance or dielectric frequency response analyses are shown to be sometimes more useful than impedance spectra analysis, mainly because information on the capacitances or deep trap states are possible to be monitored from admittance or dielectric spectra as a function of dopant concentration or annealing effects. The majority of examples of the application of admittance or dielectric analysis approach were here based on SnO2- and ZnO-based polycrystalline semiconductors devices presenting nonohmic properties. Examples of how to perform the characterization of Schottky barrier in such devices are clearly depicted. The approach is based on findings of the true Mott-Schottky pattern of the barrier by extracting the grain boundary capacitance value from complex capacitance diagram analysis. The equivalent circuit of such kind of devices is mainly consistent with the existence of three parallel elements: the high-frequency limit related to grain boundary capacitances, the complex incremental capacitance at intermediate frequency related to the deep trap relaxation and finally at low frequency region the manifestation of the conductance term representing the dc conductance of the multi-junction device. (c) 2007 Elsevier Ltd. All rights reserved.