71 resultados para ARTEMIA NAUPLII
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The functional response between ingestion rate and food concentration was determined for each larval stage of Macrobrachium rosenbergii. Artemia franciscana nauplii were supplied at 2,4, 6, 8, 10 and 12 per milliliter. The nauplii were counted by sight using a Pasteur pipette and transferred to Petri dishes containing 40 ml of brackish water (12 parts per thousand) lying on the top of black plastic. One larva at each stage was individually placed into each Petri dish containing different food density. After 24 h, each larva was removed from the Petri dish and the leftover nauplii were counted. The amount consumed was determined by the difference between the initial and final number of nauplii. Ingestion rate (I) increased as food density (P) increased and was defined by the model I=I-m(1-e(-kP)). The results suggest four levels of ingestion during larval development. The first level includes stages II, III and IV, with average maximum consumption of about 40 nauplii/day; the second level includes stages V and VI, with consumption of approximately 55 nauplii/day; the third level includes stages VII and VIII, with consumption of 80-100 nauplii/day. The fourth level includes stages IX, X and XI, in which the high values for maximum ingestion (Im) exceed the load capacity of the medium. The low values for constant k (that may correspond to the adaptability of the food to prey characteristics, such as, size, mobility, etc.) obtained for stages IX, X and XI indicated that Artemia is not an adequate prey and there is necessity of a supplementary diet. The best relationship between predator and prey seemed to occur during stage IV Results obtained in the present work may subsidize future researches and serve as a guideline for practical considerations of feeding rates. (C) 2003 Elsevier B.V. B.V. All rights reserved.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
This work investigates the acceptance of different food types and sizes by Macrobrachium rosenbergii during each larval stage. Food intake of dry and wet formulated diets of four different size classes (250-425, 425-710, 710-1000 and 1000-1190 mum), as well as Artemia nauplii, was determined. Larvae of each zoeal stage were stocked in beakers and fed ad libitum. After 30-45 min, the digestive tract of each larva was observed under a stereomicroscope. Acceptance was evaluated by food intake frequency (FFI). There was no significant interaction (P<0.05) between inert diet size and FFI for each larval stage. Therefore, food intake during larval development is independent of food particle size. The ingestion of Artemia nauplii, was significantly higher by larvae between stages II and VI. Between stages VII and XI, FFI for Artemia nauplii and wet diet was similar, while the FFI of the dry diet was similar to live food between stages IX and XI. The wet diet was ingested by more than 50% of the larvae only from stage VII onwards, while the dry diet from stage VIII onwards. These results indicate that larvae could be fed Artemia nauplii only until stage VI. Diet supplementation should start from stage VII onwards, using food particles varying from 250 to 1190 mum. (C) 2003 Elsevier B.V. B.V. All rights reserved.
Resumo:
This study aimed to evaluate the effect of food type on growth performance and water quality of angelfish juvenile. A total of 168 angelfish Pterophyllum scalare var. marble (w(i) = 151.3 +/- 37.9 mg e l(i) = 2.2 +/- 0.07 cm) were distributed in 12 aquaria 14 L (1.0 fish L(-1)). The experiment was conducted in a complete randomized design with three treatments and four replicates. Foods evaluated were: Artemia nauplii, commercial flakes diet and commercial powder diet. Fish weight and length were recorded in the beginning and the end of 60 experimental days. Water temperature, dissolved oxygen, pH and total ammonia were monitored during experiment. Best averages of final weight, final length, weight gain and condition factor were observed on fish fed powder diet. Specific growth rate, weight uniformity and survival were not influenced (p > 0.05) by food type. Just on length uniformity fish fed Artemia showed better averages than fish fed flakes diet and powder diet. Foods evaluated did not influenced (p > 0.05) on water quality parameters. In conclusion, for juvenile angelfish, the food type influences growth performance without affect water quality parameters. Powder diet resulted in better growth performance.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The aim of this study was to evaluate the growth and survival of pacu, Piaractus mesopotamicus, larvae reared in different salinities and to determine the Artemia nauplii life span in freshwater and in saline water. First feeding 5-d-old pacu larvae were reared in freshwater or at 2, 4, 6, 8, 10, 12, and 14 ppt salinities. The larvae were reared in 1.5-L aquaria at a density of 10 larvae/L with three replicates per treatment. After 10 d of rearing, significant differences (P < 0.05) were observed for growth and survival. Larval growth was higher at 2 and 4 ppt, and survival at 2 ppt was 100%. In freshwater and at 4, 6 and 8 ppt, the survival was 91.1, 93.3, 73.3, and 39.9%, respectively. At higher salinities, there was 100% mortality after 2 h (12 and 14 ppt) and 8 h (10 ppt) of exposure. The slightly saline water of at least 2 ppt increased the Artemia nauplii life span compared to the life span in freshwater. Later, in a second trial, 5-d-old pacu larvae were reared in freshwater and at 2 and 4 ppt salinities during the first 5 or 10 d of active feeding, and then the fish were transferred to freshwater. At the end of 15 d, larval growth was lower in freshwater (42 mg) than in treatments 2 and 4 ppt (5963 mg). The abrupt transfer of fish from freshwater to slightly saline water and the return to freshwater did not affect the survival rates (8997%). The larvae were able to adapt to these saline environments and handle abrupt changes in salt concentration. We concluded that salinity concentration of 2 ppt can be used for pacu larval rearing, allowing the Artemia nauplii lifetime to last longer and cause faster fish growth.
Resumo:
This study proposed the use of the stable isotope technique to track the type of food utilized by pacu Piaractus mesopotamicus larvae during their development, and to identify the moment when the larvae start using nutrients from the dry diet by retaining its carbon and nitrogen atoms in their body tissues. Five-day-old pacu larvae at the onset of exogenous feeding were fed Artemia nauplii or formulated diet exclusively; nauplii+formulated diet during the entire period; or were weaned from nauplii to a dry diet after 3, 6 or 12 days after the first feeding. delta(13)C and delta(15)N values for Artemia nauplii were -15.1 parts per thousand and 4.7 parts per thousand, respectively, and -25.0 parts per thousand and 7.4 parts per thousand for the dry diet. The initial isotopic composition of the larval tissue was -20.2 parts per thousand and 9.5 parts per thousand for delta(13)C and delta(15)N respectively. Later, at the end of a 42-day feeding period, larvae fed Artemia nauplii alone reached values of -12.7 parts per thousand and 7.0 parts per thousand for delta(13)C and delta(15)N respectively. Larvae that received the formulated diet alone showed values of -22.7 parts per thousand for delta(13)C and 9.6 parts per thousand for delta(15)N. The stable isotope technique was precise, and the time at which the larvae utilized Artemia nauplii, and later dry diet as a food source could be clearly defined.
Resumo:
The effects of different feeding schemes on pacu Piaractus mesopotamicus early development were evaluated with respect to growth, survival, muscle development, and differential gene expression of MyoD and myogenin. The pacu larvae (4 days post hatch-dph, 0.77 mg wet weight) were given six feeding treatments intentionally designed to cause variations in the larvae growth rate: (A) only artemia nauplii; (CD) only a commercial diet; (ED) only a semi-purified experimental diet; (ACD) and (AED) two treatments that involved weaning; and (S) starvation. Early weaning from artemia nauplii to the formulated diets (ACD and AED) affected growth and survival of the pacu larvae compared with the exclusive use of artemia (A). Starvation (S) and the commercial diet (CD) caused total mortality in pacu larvae at 18 dph. The experimental diet (ED) assured low fish survival and growth. The skeletal muscle morphology was not affected by the delay in somatic growth from early weaning onto the formulated diets. Three distinct muscle compartments were observed throughout the larval development in treatments A, ACD and AED: superficial, deep and intermediate, accompanied by muscle thickening. Severe undernourishment caused drastic differences in growth and in the morphology of the muscle fibers. Pacu larvae fed only formulated diets (CD and ED) showed muscle characteristics similar to the larvae in starvation (S) during the first 15 dph. At 27 and 35 dph, a slight increase in epaxial muscle mass was noted in larvae fed only the experimental diet (ED). At 35 dph, we observed a high frequency of fibers >= 40 mu m in the larvae that were weaned onto the formulated diets (ACD and AED), indicative of hypertrophy. In contrast, the larvae fed only artemia nauplii (A) displayed a larger number of fibers with diameters <= 20 mu m, which is indicative of hyperplasia. The expression of the MyoD and myogenin genes in pacu larvae at 35 dph was not affected by initial feeding (p>0.05). In conclusion, the formulated diets used impaired pacu larvae growth and survival; therefore, they were inadequate for pacu, at least at the times they were introduced. Artemia nauplii were the most adequate food source during first feeding of the pacu, and they produced bigger fish upon completion of the experiment. Moreover, the contribution of hyperplasia to the skeletal muscle growth appeared higher in fast- than in slow-growing pacu larvae. (C) 2011 Elsevier By. All rights reserved.
Resumo:
O experimento foi conduzido com o objetivo de desenvolver técnicas de manejo durante a larvicultura de trairão, realizando cultivos em água doce ou ligeiramente salinizada, utilizando náuplios de Artemia como alimento vivo. No início da alimentação exógena, oito dias após a eclosão, as larvas foram contadas e estocadas em 12 recipientes com volume útil de 1,5 L cada, dotados de sistema de aeração, numa densidade de 10 larvas/L, distribuídos dentro de três tanques de 130 L, contendo água com temperatura controlada (29,5ºC). Os tanques foram totalmente cobertos com lona plástica preta, mantendo o ambiente interno escuro, e descobertos somente para os manejos diários. As larvas foram submetidas a três tratamentos: cultivo em água doce; em água a 2 de salinidade; e em água a 4 de salinidade. Cada tratamento teve quatro repetições. A alimentação foi fornecida nas proporções diárias de 300 náuplios de Artemia/larva, do primeiro ao quinto dia, de 600 náuplios de Artemia/larva, do sexto ao décimo dia e de 900 náuplios de Artemia/larva, do décimo primeiro ao décimo quinto dia, divididos em três refeições. Ao final do experimento, foram avaliadas a sobrevivência, o crescimento (comprimento e peso), a taxa de crescimento específico e a taxa de resistência ao estresse. Após 15 dias de tratamento, não foram verificadas diferenças significativas entre os resultados das variáveis analisadas. As condições de cultivo mostraram-se eficientes, possibilitando altas taxas de sobrevivência (valores médios superiores a 91,6%), sendo a Artemia um alimento atrativo. Os níveis de salinidade utilizados não afetaram o desenvolvimento das larvas e alevinos.
Resumo:
Este estudo foi realizado com o objetivo de comparar a influência dos estímulos visual e/ou químico de náuplios de Artemia e de dieta microencapsulada sobre a taxa de ingestão da dieta microencapusulada por larvas de pacu Piaractus mesopotamicus. Utilizou-se um esquema fatorial 7 x 4 (estímulos e idades) com duas repetições. Verificou-se efeito da idade das larvas e dos estímulos, mas não houve efeito para a interação idade ´ estímulos. O estímulo químico da Artemia e ambos os estímulos da Artemia resultaram em maior taxa de ingestão de dieta inerte. Resultado intermediário foi obtido com o estímulo visual da dieta microencapsulada. O estímulo químico, em comparação ao estímulo visual da Artemia, resultou em maiores taxas de ingestão da dieta. Com o aumento da idade, houve incremento na taxa de ingestão. Os estímulos visual e químico dos náuplios e o estímulo visual da ração aumentaram a ingestão de dieta inerte por larvas de pacu. Náuplios de Artemia devem ser oferecidos antes do fornecimento da dieta inerte, pois podem auxiliar no processo de transição alimentar. Os resultados deste trabalho apontaram novas possibilidades de estudos com larvas de peixes neotropicais visando a substituição precoce do alimento vivo para o inerte.
Resumo:
Este experimento foi realizado para avaliar os efeitos da suplementação de enzimas exógenas (pancreatina suína) em microdietas sobre o crescimento, a sobrevivência e as alterações morfológicas do trato digestório de larvas de pacu, Piaractus mesopotamicus. Foram testados oito programas alimentares: alimentação exclusiva com náuplios de Artemia (AV); alimentação exclusiva com dieta microparticulada com (DMP) ou sem (DM) suplementação enzimática; substituição, aos cinco dias, dos náuplios de Artemia por dietas inertes com (AV5DMP) ou sem (AV5DM) suplementação; e substituição dos náuplios aos dez dias por dietas com (AV10DMP) ou sem (AV10DM) suplementação. O experimento teve duração de 28 dias. Larvas que receberam o alimento vivo durante todo o período experimental apresentaram maiores médias de peso. O efeito negativo da supressão do alimento vivo sobre o crescimento das larvas foi verificado tanto na substituição aos cinco dias como aos dez dias. No entanto, nas avaliações biométricas subseqüentes, observaram-se efeitos positivos da suplementação enzimática; a partir do 20º dia de experimento, as larvas que receberam a dieta suplementada com enzima exógena apresentaram peso médio estatisticamente superior ao daquelas alimentadas com a dieta sem suplementação. As diferenças morfológicas mais evidentes proporcionadas pela suplementação enzimática foram observadas nas larvas que receberam substituição alimentar aos cinco dias. As diferenças foram relativas à quantidade de grânulos de zimogênio no pâncreas e às inclusões supranucleares no intestino. As larvas submetidas à transição alimentar aos dez dias de experimento já apresentavam diferenciação morfológica do sistema digestório mais avançada, assemelhando-se muito às larvas do tratamento com alimento vivo. Os resultados deste experimento indicam que a suplementação com pancreatina proporcionou efeitos positivos sobre o crescimento e a sobrevivência das larvas de pacu.
Resumo:
The larval development of Acanthonyx petiverii H. M. Edwards, 1834, was studied in the laboratory through eggs hatched from ovigerous females collected in Ubatuba, state of São Paulo, Brazil. The rearings were carried out in a climatic room with constant temperature (25 degrees +/- 1 degrees C) and salinity (34,5 parts per thousand). The larvae were maintained individually and the food consisted of Artemia nauplii. The larval development of A. petiverii consists of two zoeal stages and a megalopa. All the larval stages were drawn and described in detail. Tables include those presenting morphological characters that allow the identification of zoeae and megalopa of A. petiverii. A comparative study was realized with previously studied majid species that occur in southern and southeastern Brazil.
Resumo:
To investigate the feeding habit of Macrobrachium amazonicum, three experiments were carried out assessing the stage at which larvae start exogenous feeding, the acceptance of inert food by different larval stages and the ratio between live and inert diet ingested by larvae at each larval stage. In the first experiment, newly hatched larvae were kept in 500-mL beakers and fed from stages I, II or III onward. Larval survival was not affected by the larval stage at which exogenous feeding started, but mean weight gain was lower when food was offered from stage III onward. In the second experiment, 60 larvae from each stage (I to IX) were fasted for 2 h and then fed on inert diet in excess. Only larvae from stage IV onward accepted this inert diet. In the last experiment, newly hatched larvae were stocked in a larviculture tank and fed daily on both Artemia nauplii and inert diet. After 15 min, food content in the digestive tract of individual larvae was analyzed under stereomicroscopy. Larvae in stage I did not feed, while live food was accepted from stage II onward and inert food from stage III onward. Larvae in stages IV, V and VI accepted both foods with no preference, while inert food was predominant in stages VII to IX In conclusion, to feed M amazonicum larvae on Artemia before stage II or on inert diet before stage IV is unnecessary. It increases production costs and may impair water quality. From stages IV to VI, feeding on Artemia and inert diet is probably necessary, while inert diet should be the main food item from stage VII onward. This schedule may optimize feeding management and production costs. (c) 2007 Elsevier B.V. All lights reserved.
Resumo:
Five-day-old pacu larvae (Piaractus mesopotamicus) with average length and weight of 5.96 mm and 0.42 mg, respectively, were reared as follows: in a semi-intensive system with larvae stocked directly into fertilized ponds (IL0)-and an initial intensive larviculture system with larvae maintained in a laboratory for 3 (IL3), 6 (IL6) and 9 (IL9) days, before being transferred to fertilized ponds. During the indoor phase, larvae were fed Artemia nauplii. Intensive-culture survivals were high (95.6%, 86.4% and 83.8% for IL3, IL6 and IL9, respectively) and at the end of the 45-day period, the longer the larvae were kept in the intensive system, the better the juvenile survival in the ponds. IL9 and IL6 survival rates were 54.0% and 45.4%, respectively, significantly higher (P < 0.05) than IL0 (11%) and IL3 presented an intermediate rate (25.3%). Due to the low survival rate of IL0, length and weight were higher (P < 0.05) when compared to IL6 and IL9; and the differences between their survival rates affected size distribution of juveniles among treatments. Treatments, which resulted in high survival (IL6 and IL9), presented a great number of small fish. In contrast, IL0 and IL3 produced many large and extra large individuals. In general, the results indicate that pacu juvenile production by initial intensive larviculture (IL6 and IL9) was the most efficient method. Therefore, further studies should be conducted in order to improve larval growth in the laboratory and handling techniques in both the laboratory and ponds. (C) 2003 Elsevier B.V. B.V. All rights reserved.