101 resultados para AAS
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
This paper describes the preparation of acid carboxymethylcellulose (CMCH), and the results of a study on the adsorption and preconcentration (using batch and flow-through column methods) of Cd(II), Cu(II), Cr(III), Fe(III), Ni(II) and Zn(II) in ethanol medium. The adsorption capacities for each metallic ion were (in mmol g(-1)) Cd(II) = 0.92; Cu(II) = 1.45; Cr(III) = 1.70; Fe(III) = 1.60; Ni(II) = 1.30; and Zn(II) = 1.10. By means of the flow-through method, a recovery of ca. 100% of the metallic ions adsorbed in a column packed with 2 g of CMCH was found when 5.0 mL of 1.0 mol L-1 hydrochloric acid were used as eluent. An enrichment factor of 20 (100 mt solution containing 50 mu g L-1 of the metallic ions, concentrated to 5.0 mt) was obtained by this preconcentration procedure. The sorption-desorption procedure applied allowed the development of a preconcentration and Flame AAS quantification method of metallic ions in fuel ethanol at trace levels.
Resumo:
5-amino-1,3,4-thiadiazole-2-thiol groups attached on a silica gel surface have been used for adsorption of Cd(II), Co(II), Cu(II), Fe(III), Ni(II), Pb(II) and Zn(II) from aqueous solutions. The adsorption capacities for each metal ion were (in mmol.g(-1)): Cd(II)= 0.35, Co(II)= 0.10, Cu(II)= 0.15, Fe(III)= 0.20, Hg(Il)= 0.46, Ni(II)= 0.16, Pb(II)= 0.13 and Zn(II)= 0.15. The modified silica gel was applied in the preconcentration and quantification of trace level metal ions present in water samples (river, and bog water).
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
A method for the direct determination of Ni in soft drinks by graphite furnace atomic absorption spectrometry using a transversely heated graphite atomizer (THGA), Zeeman-effect background corrector, and Co as the internal standard (IS) is proposed. Magnesium nitrate was used to stabilize both Ni and Co. All diluted samples (1+1) in 0.2% (v/v) HNO3 and reference solutions [5.0-50 mu g L-1 Ni in 0.2% (v/v) HNO3] were spiked with 50 mu g L-1 Co. For a 20-mu L sample dispensed into the atomizer, correlations between the ratio of absorbance of Ni to absorbance of Co and the analyte concentration were close to 0.9996. The relative standard deviation of the measurements varied from 0.5 to 3.4% and 1.0 to 7.0% (n=12) with and without IS, respectively. Recoveries within 98-104% for Ni spikes were obtained using IS. The characteristic mass was calculated as 43 pg Ni and the limit of detection was 1.4 mu g L-1. The accuracy of the method was checked for the direct determination of Ni in soft drinks and the results obtained with IS were better than those without IS.
Resumo:
This work describes the development of an analytical procedure for on-line tin determination using thermospray flame furnace atomic absorption spectrometry (TS-FF-AAS). Two tubes were evaluated as atomization cells: a metallic tube (Ni-Cr, principal components composition: 73.95% Ni and 16.05% Cr) and a ceramic tube (99.8% Al2O3). The use of air as the carrier was made by employing a Rheodyne valve to inject the samples, allowing an analytical frequency of 90 h(-1) and avoiding sample dispersion. The carrier flow rate (air), sample volume injected, and acid concentration (HCl) were evaluated for the optimization of the TS-FF-AAS system. The sensitivity for 50 mL of analytical solution with TS-FF-AAS was 2 and 5 times higher (to metallic and ceramic tube, respectively) than using an acetylene-nitrous oxide flame with pneumatic aspiration (requiring a sample volume of approximately 20 times higher.
Resumo:
A method was developed using the multi-element graphite furnace atomic absorption spectrometry technique for the direct and simultaneous determination of As, Cu, and Pb in Brazilian sugar cane spirit (cachaqa) samples. Also employed was the end-capped transversely heated graphite atomizer (THGA) with platforms pre-treated with W permanent modifier and co-injection of Pd/Mg(NO3)(2). Pyrolysis and atomization temperature curves were established in a cachaqa medium (1+1; v/v) containing 0.2% (v/v) HNO3 and spiked with 20 mu g L-1 As and Pb and 200 mu g L-1 Cu. The effect of the concentration of major elements usually present in cachaqa matrices (Ca, Mg, Na, and K) and ethanol on the absorbance of As, Cu, and Pb was investigated. Analytical working solutions of As, Cu, and Pb were prepared in 10% (v/v) ethanol plus 5.0 mg L-1 Ca, Mg, Na, and K. Acidified to 0.2% (v/v) HNO3, these solutions were suitable to build calibration curves by matrix matching. The proposed method was applied to the simultaneous determination of As, Cu, and Pb in commercial sugar cane spirits. The characteristic mass for the simultaneous determination was 16 pg As, 119 pg Cu, and 28 pg Pb. The pretreated tube lifetime was about 450 firings. The limit of detection (LOD) was 0.6 mu g L-1 As, 9.2 mu g L-1 Cu, and 0.3 pig L-1 Pb. The found concentrations varied from 0.81 to 4.28 mu g L-1 As, 0.28 to 3.82 mg L-1 Cu and 0.82 to 518 mu g L-1 Pb. The recoveries of the spiked samples varied from 94-112% (As), 97-111% (Cu), and 95-101% (Pb). The relative standard deviation (n=12) was 6.9%, 7.4%, and 7.7% for As, Cu, and Pb, respectively, present in a sample at 0.87 mu g L-1, 0.81 mg L-1, and 38.9 mu g L-1 concentrations.
Resumo:
A comparative study is reported between C-18 bonded silica gel and powdered polyethylene (PE) as sorbent for Cd, Cu, and Pb determination using ammonium diethyldithiophosphate (ADTP) as the complexing agent in a flow injection system. The complexes were formed in 0.14 mol L-1 HNO3 and processed in a simple flow system comprising a peristaltic pump, a manual injector-commutator, and a sorbent-packed minicolumn. Ethanol was selected as the eluent and analytes in the eluate were determined by flame atomic absorption spectrometry. The optimum concentration of the complexing agent was 0.1% (m/v) ADTP for Cu and Pb determination using either C-18 or PE, and 0.25% (m/v) ADTP for Cd determination using PE. The sample loading flow rates were 5.0, 3.6, and 3.0 mL min(-1) for Cu, Pb, and Cd, respectively. The best elution flow rate was 6.5 mL min(-1). For a 60-sec preconcentration time, the sampling rate was 40 h(-1) and the enrichment factors of 33, 36, and 11 times (C-18) or 18, 22, and 23 times (PE) were obtained for Cu, Pb, and Cd, respectively. The limits of detection (LOD) were 1.6 mug L-1 Cu, 11 mug L-1 Pb, and 2.0 mug L-1 Cd using C-18 or 2.9 mug L-1 Cu, 19 mug L-1 Pb, and 1.0 mug L-1 Cd using PE, respectively. The relative standard deviations (n = 12) were typically <2%, <2%, and <6% for Cd, Cu, and Pb, respectively. The recoveries of Cd, Cu, and Pb added to wine samples varied from 96-99%, 97-102%, and 90-99%, respectively, using C-18 or PE. Accuracy was checked for Cd, Cu, and Pb determination in six wine samples digested by block digestor and open-vessel microwave-assisted digestion systems. The results revealed that C-18 was more efficient for Cu and Pb determination, while PE was the best sorbent for Cd.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
A rapid and sensitive method was developed to determine trace levels of Cd2+ ions in an aqueous medium by flame atomic absorption spectrometry, using on-line preconcentration in a mini-column packed with 100 mg of 2-aminothiazol modified silica gel (SiAT). The Cd2+ ions were sorbed at pH 5.0. The preconcentrated Cd2+ ions were directly eluted from the column to the spectrometer's nebulizer-burner system using 100 μL of 2 mol L-1 hydrochloric acid. A retention efficiency of over 95% was achieved. The enrichment factor (calculated as the ratio of slopes of the calibration graphs) obtained with preconcentrations in a mini-column packed with SiAT (A = -1.3 × 10-3 + 1.8 × 10-3 [Cd2+]) and without preconcentrations (A = 4 × 10-5 + 3.5 × 10-3[Cd2+]), was 51 and the detection limit calculated was 0.38 μg L-1. The preconcentration procedure was applied to determine trace levels of Cd in river water samples. The optimum preconcentration conditions are discussed herein.
Resumo:
A calibration method was developed using flow injection analysis (FI) with a Gradient Calibration Method (GCM). The method allows the rapid determination of zinc In foods (approximately 30 min) after treatment with concentrated sulphuric acid and 30% hydrogen peroxide, and analysis with flame atomic absorption spectrometry (FAAS). The method provides analytical results with a relative standard deviation of about 2% and requires less time than by conventional FI calibration. The electronic selection of different segments along the gradient and monitoring of the technique covers wide concentration ranges while maintaining the inherent high precision of flow injection analysis. Concentrations, flow rates, and flow times of the reagents were optimized in order to obtain best accuracy and precision. Flow rates of 10 mL/min were selected for zinc. In addition, the system enables electronic dilution and calibration where a multipoint curve can be constructed using a single sample injection.
Resumo:
A method was developed using the multi-element graphite furnace atomic absorption spectrometry technique for the direct and simultaneous determination of As, Cu, and Pb in Brazilian sugar cane spirit (cachaça) samples. Also employed was the end-capped transversely heated graphite atomizer (THGA) with platforms pre-treated with W permanent modifier and co-injection of Pd/Mg(N03)2. Pyrolysis and atomization temperature curves were established in a cachaça medium (1+1; v/v) containing 0.2% (v/v) HN03 and spiked with 20 μg L-1 As and Pb and 200 μg L-1Cu. The effect of the concentration of major elements usually present in cachaça matrices (Ca, Mg, Na, and K) and ethanol on the absorbance of As, Cu, and Pb was investigated. Analytical working solutions of As, Cu, and Pb were prepared in 10% (v/v) ethanol plus 5.0 mg L-1 Ca, Mg, Na, and K. Acidified to 0.2% (v/v) HNO3, these solutions were suitable to build calibration curves by matrix matching. The proposed method was applied to the simultaneous determination of As, Cu, and Pb in commercial sugar cane spirits. The characteristic mass for the simultaneous determination was 16 pg As, 119 pg Cu, and 28 pg Pb. The pretreated tube lifetime was about 450 firings. The limit of detection (LOD) was 0.6 μg L-1As, 9.2 μg L-1 Cu, and 0.3 μg L-1Pb. The found concentrations varied from 0.81 to 4.28 μg L-1As, 0.28 to 382 mg L-1 Cu and 0.82 to 518 μg L-1 Pb. The recoveries of the spiked samples varied from 94-112% (As), 97-111% (Cu), and 95-101% (Pb). The relative standard deviation (n=12) was 6.9%, 7.4%, and 7.7% for As, Cu, and Pb, respectively, present in a sample at 0.87 μgL-1, 0.81 mgL-1, and 38.9 μgL-1concentrations.