147 resultados para phenolic compound
Resumo:
We present results of ultrasonic measurements on a single crystal of the distorted diamond-chain compound azurite Cu-3(CO3)(2)(OH)(2). Pronounced elastic anomalies are observed in the temperature dependence of the longitudinal elastic mode c(22) which can be assigned to the relevant magnetic interactions in the system and their couplings to the lattice degrees of freedom. From a semiquantitative analysis of the magnetic contribution to c(22) the magnetoelastic coupling G = partial derivative J(2)/partial derivative epsilon(b) can be estimated, where J(2) is the intradimer coupling constant and epsilon(b) the strain along the intrachain b axis. We find an exceptionally large coupling constant of | G| similar to 3650 K highlighting an extraordinarily strong sensitivity of J(2) against changes of the b-axis lattice parameter. These results are complemented by measurements of the hydrostatic pressure dependence of J2 by means of thermal expansion and magnetic susceptibility measurements performed both at ambient and finite hydrostatic pressure. We propose that a structural peculiarity of this compound, in which Cu2O6 dimer units are incorporated in an unusually stretched manner, is responsible for the anomalously large magnetoelastic coupling.
Resumo:
The complexity of biological samples poses a major challenge for reliable compound identification in mass spectrometry (MS). The presence of interfering compounds that cause additional peaks in the spectrum can make interpretation and assignment difficult. To overcome this issue, new approaches are needed to reduce complexity and simplify spectral interpretation. Recently, focused on unknown metabolite identification, we presented a new approach, RANSY (ratio analysis of nuclear magnetic resonance spectroscopy; Anal. Chem. 2011, 83, 7616-7623), which extracts the signals related to the same metabolite based on peak intensity ratios. On the basis of this concept, we present the ratio analysis of mass spectrometry (RAMSY) method, which facilitates improved compound identification in complex MS spectra. RAMSY works on the principle that, under a given set of experimental conditions, the abundance/intensity ratios between the mass fragments from the same metabolite are relatively constant. Therefore, the quotients of average peak ratios and their standard deviations, generated using a small set of MS spectra from the same ion chromatogram, efficiently allow the statistical recovery of the metabolite peaks and facilitate reliable identification. RAMSY was applied to both gas chromatography/MS and liquid chromatography tandem MS (LC-MS/MS) data to demonstrate its utility. The performance of RAMSY is typically better than the results from correlation methods. RAMSY promises to improve unknown metabolite identification for MS users in metabolomics or other fields.
Resumo:
Herbs and spices have long been used to improve the flavour of food without being considered as nutritionally significant ingredients. However, the bioactive phenolic content of these plant-based products is currently attracting interest.In the present work, liquid chromatography coupled to high-resolution/accurate mass measurement LTQ-Orbitrap mass spectrometry was applied for the comprehensive identification of phenolic constituents of six of the most widely used culinary herbs (rosemary, thyme, oregano and bay) and spices (cinnamon and cumin). In this way, up to 52 compounds were identified in these culinary ingredients, some of them, as far as we know, for the first time. In order to establish the phenolic profiles of the different herbs and spices, accurate quantification of the major phenolics was performed by multiple reaction monitoring in a triple quadrupole mass spectrometer. Multivariate statistical treatment of the results allowed the assessment of distinctive features among the studied herbs and spices. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
Tomato products are a key component of the Mediterranean diet, which is strongly related to a reduced risk of cardiovascular events. The effect of cooking time (15, 30, 45, and 60 min) and the addition of extra virgin olive oil (5 and 10%) on the phenolic content of tomato sauces was monitored using liquid chromatography coupled to tandem mass spectrometry. Concentration of phenolics in the tomato sauces decreased during the cooking process, with the exception of caffeic acid and tyrosol. The main degradation observed was the oxidation of quercetin, since the hydroxy-function at the C-ring of this flavonoid is not blocked by a sugar moiety, unlike rutin. Higher levels of virgin olive oil in tomato sauce seemed to enhance the extraction of phenolic compounds from the tomato, leading to higher phenolic contents in the sauces. Thus, the food matrix containing the phenolic compounds plays a crucial role in determining their accessibility.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The Cashew Nut Shell Liquid (CNSL) can be considered as a versatile raw material with wide applications in the form of surface coatings, paints and varnishes, as well as the production of polymers. Within this context, the chemical constituents of CNSL (anarcadic acid, cardanol, 2-cardol and methylcardol) become promising in the development of new materials components. Once separated, CNSL can be used in the research and development of additives, surfactants, pharmaceuticals, pesticides, polymers, resins and others. Being a byproduct, CNSL used in the preparation of new materials is characterized as a truly technological innovation.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
This review aimed to discuss the main bioactive compounds present in oils extracted from palm trees, indicating possible applications for the same. The bioactive compounds approached were: phenolic compounds, carotenoids, tocopherols, mono and polyunsaturated fatty acids. It is growing the search for food, especially from plant origin, characterized by the presence of such substances due to their benefi ts. Many studies show palm species as important sources of bioactive compounds and essential fatty acids. Therefore it is important to study the fruit characterization and composition of the oil from palm species of different regions that are still poorly investigated, seeking the possibility of its application in industry or the development of functional foods.
Resumo:
Coumarin is a natural active compound that can be found in many plants. The coumarins have many properties such as bronchodilator, anti-inflammatory, antioxidant, anticoagulant, antibiotics, immunomodulatory, antimicrobial and antiviral, thus, they are widely used in medical applications. More recently the coumarin derivatives have attracted the interest of many research groups in the field of new materials, for example the possibility of their use as sensitizers in dye-sensitized solar cells (DSSC) and lasers. The MCRs are defined as a process in which three or more reactants are combined in the same reaction pot, resulting in products with good structural complexity a single step, in addition to economy of atoms and selectivity and is a very important feature in modern synthetic methodology. In this work we investigated the use of niobium pentachloride as catalyst of the multicomponent reactions between phenolic derivatives, various aromatic aldehydes and β-diester derivatives in the synthesis of 4-aryl-3,4-dihydrocoumarin derivatives. The reactions were carried out at room temperature, under inert atmosphere (N2), using dichloromethane anhydrous (CH2 Cl2) as solvent, with a reaction time of most 120 hours. The products were isolated by column chromatography on silica gel and submitted to spectrometric and spectroscopic analysis. The results show that NbCl5 is an excellent agent for promoting the synthesis of 4-aryl-3,4-dihydrocoumarin derivatives through multicomponent reactions, obtaining yields varying from 45 to 95%
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)