150 resultados para generalised least squares
Resumo:
When registering spectral radiance from surface targets, digital numbers recorded by the imagery sensor may vary. Such variation causes imperfections on the images coming from aerial surveys. Variation in the image brightness related to the distance from the center of the image is known as the vignetting effect. Correcting this effect aims at achieving an homogeneous image brightness. The purpose of this paper is to present a specific methodology to determine a model in order to minimize this vignette effect based on a model fit by Least Squares Method (LSM), using digital numbers (DN) from shadowed regions. The main hypothesis is that the recorded DN of shadow pixels should be suitable to model the vignetting effect. Considering that the vignetting effect could be modeled as a trend of spatial image variation, a trend surface analysis of a sample of pixels from shadowed regions was carried out. Two approaches were adopted to represent the shadow regions of an image. The first one takes into account the components R, G, B of the aerial image within the visible spectral band, and the second one considers the component I of the HSI image. In order to evaluate the methodology, a study case with a color aerial image was carried out. The findings showed that the best results were obtained by applying the model in the RGB components, which allows to conclude that the vignetting effect can be modeled based on trend surfaces fit on shadow regions DN.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Pós-graduação em Ciências Cartográficas - FCT
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Localização automática de pontos de controle em imagens aéreas baseada em cenas terrestres verticais
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The noteworthy of this study is to predict seven quality parameters for beef samples using time-domain nuclear magnetic resonance (TD-NMR) relaxometry data and multivariate models. Samples from 61 Bonsmara heifers were separated into five groups based on genetic (breeding composition) and feed system (grain and grass feed). Seven sample parameters were analyzed by reference methods; among them, three sensorial parameters, flavor, juiciness and tenderness and four physicochemical parameters, cooking loss, fat and moisture content and instrumental tenderness using Warner Bratzler shear force (WBSF). The raw beef samples of the same animals were analyzed by TD-NMR relaxometry using Carr-Purcell-Meiboom-Gill (CPMG) and Continuous Wave-Free Precession (CWFP) sequences. Regression models computed by partial least squares (PLS) chemometric technique using CPMG and CWFP data and the results of the classical analysis were constructed. The results allowed for the prediction of aforementioned seven properties. The predictive ability of the method was evaluated using the root mean square error (RMSE) for the calibration (RMSEC) and validation (RMSEP) data sets. The reference and predicted values showed no significant differences at a 95% confidence level.