178 resultados para endothelial nitric oxide synthase
Resumo:
Alterations in the synthesis or enhanced inactivation of nitric oxide (NO) and increase in fibrin deposition in the vascular bed lead to an imbalance that can induced intravascular coagulation. NO is produced through L-arginine pathway by constitutive and inducible nitric oxide synthase (NOS). The inducible isoform can be activated by cytokines such as tumor necrosis factor alfa. We evaluated NO-induced tissue-plasminogen activator (t-PA) release from isolated aortic segments of Wistar rats measuring the fibrinolytic activity in the fibrin plate. Inhibition of NO biossynthesis with Nω-nitro-L-arginine (NωNLA) significantly attenuated the fibrinolytic activity (FA) evoked by aortic segments of this group (GII) compared to the saline group (GI). The administration of L-arginine produced restoration of FA in this group (GIII) treated with NωNLA suggesting that t-PA arising from segments of rat aorta is influenced by NO.
Resumo:
OBJECTIVE: To determine the acute and sustained effects of early inhaled nitric oxide on some oxygenation indexes and ventilator settings and to compare inhaled nitric oxide administration and conventional therapy on mortality rate, length of stay in intensive care, and duration of mechanical ventilation in children with acute respiratory distress syndrome. DESIGN: Observational study. SETTING: Pediatric intensive care unit at a university-affiliated hospital. PATIENTS: Children with acute respiratory distress syndrome, aged between 1 month and 12 yrs. INTERVENTIONS: Two groups were studied: an inhaled nitric oxide group (iNOG, n = 18) composed of patients prospectively enrolled from November 2000 to November 2002, and a conventional therapy group (CTG, n = 21) consisting of historical control patients admitted from August 1998 to August 2000. MEASUREMENTS AND MAIN RESULTS: Therapy with inhaled nitric oxide was introduced as early as 1.5 hrs after acute respiratory distress syndrome diagnosis with acute improvements in Pao(2)/Fio(2) ratio (83.7%) and oxygenation index (46.7%). Study groups were of similar ages, gender, primary diagnoses, pediatric risk of mortality score, and mean airway pressure. Pao(2)/Fio(2) ratio was lower (CTG, 116.9 +/- 34.5; iNOG, 62.5 +/- 12.8, p <.0001) and oxygenation index higher (CTG, 15.2 [range, 7.2-32.2]; iNOG, 24.3 [range, 16.3-70.4], p <.0001) in the iNOG. Prolonged treatment was associated with improved oxygenation, so that Fio(2) and peak inspiratory pressure could be quickly and significantly reduced. Mortality rate for inhaled nitric oxide-patients was lower (CTG, ten of 21, 47.6%; iNOG, three of 18, 16.6%, p <.001). There was no difference in intensive care stay (CTG, 10 days [range, 2-49]; iNOG, 12 [range, 6-26], p >.05) or duration of mechanical ventilation (TCG, 9 days [range, 2-47]; iNOG, 10 [range, 4-25], p >.05). CONCLUSIONS: Early treatment with inhaled nitric oxide causes acute and sustained improvement in oxygenation, with earlier reduction of ventilator settings, which might contribute to reduce the mortality rate in children with acute respiratory distress syndrome. Length of stay in intensive care and duration of mechanical ventilation are not changed. Prospective trials of inhaled nitric oxide early in the setting of acute lung injury in children are needed.
Resumo:
As several structures of the central nervous system are involved in the control of hydromineral and cardiovascular balance we investigated whether the natriorhexigenic and pressor response induced by the injection of ANG II into the 3rd V could be mediated by vasopressinergic and nitrergic system. Male Holtzman rats weighing 200-250 g with cannulae implanted into the 3rd V were used. The drugs were injected in 0.5 μL over 30-60 sec. Controls were injected with a similar volume of 0.15 M NaCl. ANGII increased the water intake vs control. AVPA injected into 3rd V prior to ANGII decreased the dipsogenic effect of ANGII. L-arginine also decreased the water intake induced by ANGII. AVPA plus L-arginine inhibit the water intake induced by ANGII. 7NIT injected prior to ANGII potentiated the dipsogenic effect of ANGII. Pre-treatment with ANGII increased the sodium ingestion vs control. AVPA decreased the ANGII effect in sodium intake. L-arginine also decreased the natriorhexigenic effect of ANGII. The combination of L-arginine and AVPA inhibit the sodium intake induced by ANGII. 7NIT injected prior to ANGII potentiated the sodium intake induced by ANGII. ANGII induced an increase in Mean Arterial Pressure (MAP) vs control. AVPA and L-arginine induced a decreased in the pressor effect of ANGII. The combination of L-arginine and AVPA inhibit the pressor effect of ANGII. 7NIT injected prior to ANGII into 3rd V potentiated the pressor effect of ANGII. These data suggest that arginine vasopressin V 1 receptors and Nitric Oxide (NO) within the circumventricular structures may be involved in sodium intake and pressor response induced by the activation of ANGII receptors within the circumventricular neurons. These studies revealed the involvement of sodium appetite by utilizing the angiotensinergic, vasopressinergic and nitrergic system in the central regulation of blood pressure. © 2006 Asian Network for Scientific Information.
Resumo:
This study aimed to evaluate whether experimental Chagas disease in acute phase under benznidazole therapy can cause DNA damage in peripheral blood, liver, heart, and spleen cells or induce nitric oxide synthesis in spleen cells. Twenty Balb/c mice were distributed into four groups: control (non-infected animals); Trypanosoma cruzi infected; T. cruzi infected and submitted to benznidazole therapy; and only treated with benznidazole. The results obtained with the single cell gel (comet) assay showed that T. cruzi was able induce DNA damage in heart cells of both benznidazole treated or untreated infected mice. Similarly, T. cruzi infected animals showed an increase of DNA lesions in spleen cells. Regarding nitric oxide synthesis, statistically significant differences (p < 0.05) were observed in all experimental groups compared to negative control, the strongest effect observed in the T. cruzi infected group. Taken together, these results indicate that T. cruzi may increase the level of DNA damage in mice heart and spleen cells. Probably, nitric oxide plays an important role in DNA damaging whereas benznidazole was able to minimize induced T. cruzi genotoxic effects in spleen cells. © 2006 Elsevier Inc. All rights reserved.
Resumo:
We study the effects of angiotensin receptors antagonists, arginine vasopressin receptor antagonist, L-arginine and L-NAME, injected into supraoptic nucleus of the hypothalamus (SON) on sodium intake induced by the injection of angiotensin II (ANGII). Holtzman rats weighing 200-250 g with canulae implanted into the SON were used. The drugs were injected in 0.5 μL over 30-60 sec. Sodium intake after injection of saline SAL+SAL 0.15 M NaCl was 0.10±00.1 mL 2 h -1; SAL+ANGII injected into SON increased sodium intake. Losartan injected prior to ANGII into SON decreased sodium intake induced by ANGII. PD123319 injected prior to ANGII produced no changes in sodium intake induced by ANGII. AVPA receptor V 1 antagonist injected prior to ANGII reduced sodium intake with a less intensity than losartan. L-arginine injected prior to ANGII decreases sodium intake at a same intensity than losartan. L-NAME injected prior to ANGII potentiated sodium intake induced by ANGII. Losartan injected simultaneously with L-arginine prior to ANGII blocked the natriorexigenic effect of ANGII. These results confirm the importance of SON in the control of sodium intake. Also suggest that both AT 1 and arginine vasopressin V 1 receptors interact with nitrergic pathways within the SON influencing the sodium metabolism by changing sodium appetite induced by ANGII. © 2007 Asian Network for Scientific Information.
Resumo:
This study present a novel NO sensor made of a spin trap (iron(II)-diethyldithiocarbamate complex, FeDETC) incorporated in a latex rubber matrix and works as a trap for NO, which is detectable by Electron Paramagnetic Resonance (EPR). We explored the optimization of our sensors changing systematically two fabrication parameters: the latex rubber matrix temperature of polymerization and FeDETC concentration inside the matrix. The sensor was prepared in four different temperatures: 4, 10, 20 and 40°C. The FeDETC concentration was also varied from 0.975 to 14.8 mM. We observed a variation of the EPR signals from the sensors prepared at different conditions. We found a high stability of the EPR response from our sensor, 40 days at RT. The best sensor was made with a latex rubber matrix polymerized at 10°C and with a FeDETC concentration of 14.8 mM. In vivo tests show good biocompatibility of our sensor. © 2007 Asian Network for Scientific Information.
Resumo:
Background: Airway eosinophilia is considered a central event in the pathogenesis of asthma. The toxic components of eosinophils are thought to be important in inducing bronchial mucosal injury and dysfunction. Previous studies have suggested an interaction between nitric oxide (NO) and chemokines in modulating eosinophil functions, but this is still conflicting. In the present study, we have carried out functional assays (adhesion and degranulation) and flow cytometry analysis of adhesion molecules (VLA-4 and Mac-1 expression) to evaluate the interactions between NO and CC-chemokines (eotaxin and RANTES) in human eosinophils. Methods: Eosinophils were purified using a percoll gradient followed byimmunomagnetic cell separator. Cell adhesion and degranulation were evaluated by measuring eosinophil peroxidase (EPO) activity, whereas expression of Mac-1 and VLA-4 was detected using flow cytometry. Results: At 4 h incubation, both eotaxin (100 ng/ml) and RANTES (1000 ng/ml) increased by 133% and 131% eosinophil adhesion, respectively. L-NAME alone (but not D-NAME) also increased the eosinophil adhesion, but the co-incubation of L-NAME with eotaxin or RANTES did not further affect the increased adhesion seen with chemokines alone. In addition, L-NAME alone (but not D-NAME) caused a significant cell degranulation, but it did not affect the CC-chemokine-induced cell degranulation. Incubation of eosinophils with eotaxin or RANTES, in absence or presence of L-NAME, did not affect the expression of VLA-4 and Mac-1 on eosinophil surface. Eotaxin and RANTES (100 ng/ml each) also failed to elevate the cyclic GMP levels above baseline in human eosinophils. Conclusion: Eotaxin and RANTES increase the eosinophil adhesion to fibronectin-coated plates and promote cell degranulation by NO-independent mechanisms. The failure of CC-chemokines to affect VLA-4 and Mac-1 expression suggests that changes in integrin function (avidity or affinity) are rather involved in the enhanced adhesion. © 2008 Lintomen et al; licensee BioMed Central Ltd.
Resumo:
The effects of isolated compounds from Brazilian lichens and their derivatives on H 2O 2 and NO production were studied using murine macrophages as a part of an attempt to understand their possible immunomodulatory properties. The compound cytotoxicity was studied using MTT assay. Macrophage stimulation was evaluated by the determination of NO (Griess assay) and H 2O 2 (horseradish peroxidase/phenol red) in supernatants of peritoneal macrophage cultures of Swiss mice. This research demonstrated stimulatory activities of some phenolic compounds isolated from lichens and their derivatives on H 2O 2 and NO production. Structure-activity relationships suggest several synthetic directions for further improvement of immunological activity.
Resumo:
The activities of perlatolic acid (1), atranorin (2), and lecanoric acid (3) and their derivatives, such as orsellinates and β-methyl orsellinates obtained by alcoholysis, were assessed for stimulation of the release of hydrogen peroxide and nitric oxide in cultures of peritoneal macrophage cells from mice. The hydrogen peroxide production was estimated by oxidation of phenol red, while the Griess reagent was used to determine the nitric oxide production. 1 and 4-methoxy-ethyl orsellinate (XVII) were the compounds that induced the greatest release of H 2O 2, whereas n-pentyl orsellinate (IV), iso-propyl orsellinate (V), sec-butyl orsellinate (VI), and XVII induced a small release of NO. These results indicate that lichen products and their derivatives have potential immune-modulating activities. © 2009 Verlag der Zeitschrift für Naturforschung, Tübingen.
Resumo:
The syntheses and properties of trans-[Ru(NH3) 4(L)(NO)](BF4)3 (L = isonicotinic acid (inaH) (I) or ina-Tat48-60 (II)) are described. Tat48-60, a cell penetrating peptide fragment of the Tat regulatory protein of the HIV virus, was linked to the ruthenium nitrosyl through inaH. I and II release NO after reduction forming trans-[Ru(NH3)4(L)(H2O)]3 +. The IC50 values against B16-F10 melanoma cells of I and II (21 μmol L- 1 and 23 μmol L- 1, respectively) are close to that of the commercially available cisplatin (33 μmol L- 1) and smaller than similar complexes. The cytotoxicity is assigned to the NO released from I and II. © 2012 Elsevier B.V.
Resumo:
The aim of this study was to evaluate nitric oxide levels, lipid peroxidation, protein oxidation and glutathione reductase activity in serum of dogs experimentally infected by Ehrlichia canis. Banked serum samples of dogs divided into two groups were used: negative control (n=5) and infected by E. canis (n=5). The concentration of nitrite/nitrate (NOx), lipid peroxidation (TBARS), advanced oxidation protein products (AOPP), and glutathione reductase (GR) activity in sera were evaluated. Samples were collected on days 0, 3, 6, 18 and 30 post-infection (PI). NOx and TBARS levels were significantly (P<0.05) higher in the infected group at 18 and 30 days PI, as well as AOPP levels at 30 days PI when compared to samples from control group. The GR activity was significant (P<0.05) increased in serum of dogs infected by E. canis on days 18 and 30 PI. Based on the increased levels of NOx, TBARS, AOPP and GR activity we concluded that dogs experimentally infected by E. canis develop a state of redox imbalance and that these changes might be involved in the pathophysiology of the disease. © 2013 Elsevier B.V.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)