139 resultados para barium chloride


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Activation of GABAB receptors with baclofen into the lateral parabrachial nucleus (LPBN) induces ingestion of water and 0.3 M NaCl in fluid replete rats. However, up to now, no study has investigated the effects of baclofen injected alone or combined with GABAB receptor antagonist into the LPBN on water and 0.3 M NaCl intake in rats with increased plasma osmolarity (rats treated with an intragastric load of 2 M NaCl). Male Wistar rats with stainless steel cannulas implanted bilaterally into the LPBN were used.Results: In fluid replete rats, baclofen (0.5 nmol/0.2 μl), bilaterally injected into the LPBN, induced ingestion of 0.3 M NaCl (14.3 ± 4.1 vs. saline: 0.2 ± 0.2 ml/210 min) and water (7.1 ± 2.9 vs. saline: 0.6 ± 0.5 ml/210 min). In cell-dehydrated rats, bilateral injections of baclofen (0.5 and 1.0 nmol/0.2 μl) into the LPBN induced an increase of 0.3 M NaCl intake (15.6 ± 5.7 and 21.5 ± 3.5 ml/210 min, respectively, vs. saline: 1.7 ± 0.8 ml/210 min) and an early inhibition of water intake (3.5 ± 1.4 and 6.7 ± 2.1 ml/150 min, respectively, vs. saline: 9.2 ± 1.4 ml/150 min). The pretreatment of the LPBN with 2-hydroxysaclofen (GABAB antagonist, 5 nmol/0.2 μl) potentiated the effect of baclofen on 0.3 M NaCl intake in the first 90 min of test and did not modify the inhibition of water intake induced by baclofen in cell-dehydrated rats. Baclofen injected into the LPBN did not affect blood pressure and heart rate.Conclusions: Thus, injection of baclofen into the LPBN in cell-dehydrated rats induced ingestion of 0.3 M NaCl and inhibition of water intake, suggesting that even in a hyperosmotic situation, the blockade of LPBN inhibitory mechanisms with baclofen is enough to drive rats to drink hypertonic NaCl, an effect independent of changes in blood pressure. © 2013 Kimura et al.; licensee BioMed Central Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The influence of ethanol, sulfuric acid and chloride on the corrosion resistance of 316L stainless steel was investigated by means of polarization curves and electrochemical impedance spectroscopy measurements. Over the studied range, the steel corrosion potential was independent of H2SO 4 and NaCl concentrations in aqueous solution. On the other hand, in solution containing 65 wt.% ethanol and 35 wt.% water, the corrosion potentials were higher than those obtained in aqueous solution. Besides, the steel corrosion potential was affected by the addition of H2SO4 and NaCl in solution. In solutions with and without ethanol, plus 0.35 wt.% NaCl, the presence of 1 wt.% H2SO4 inhibited the appearance of pitting corrosion. © 2013 Sociedade Brasileira de Química.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The polyvinyl alcohol (PVA)/barium zirconium titanate Ba[Zr0.1Ti0.9]O3 (BZT) polymer-ceramic composites with different volume percentage are obtained from solution mixing and hot-pressing method. Their structural and electrical properties are characterized by X-ray diffraction (XRD), Rietveld refinement, cluster modeling, scanning electron microscope and dielectric study. XRD patterns of PVA/BZT polymer-ceramics composite (with 50% volume fractions) indicate no obvious differences than the XRD patterns of pure BZT which shows that the crystal structure is still stable in the composite. The scanning electron micrograph indicates that the BZT ceramic is dispersed homogeneously in the polymer matrix without agglomeration. The dielectric permittivity (ε r) and the dielectric loss (tan δ) of the composites increase with the increase of the volume fraction of BZT ceramic. Theoretical models are employed to rationalize the dielectric behavior of the polymer composites. The dielectric properties of the composites display good stability within a wide range of temperature and frequency. The excellent dielectric properties of these polymer-ceramic composites indicate that the BZT/PVA composites can be a candidate for embedded capacitors. © 2013 Elsevier B.V.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work describes the efficiency of photoelectrocatalysis based on Ti/TiO2 nanotubes in the degradation of the azo dyes Disperse Red 1, Disperse Red 13 and Disperse Orange 1 and to remove their toxic properties, as an alternative method for the treatment of effluents and water. For this purpose, the discoloration rate, total organic carbon (TOC) removal, and genotoxic, cytotoxic and mutagenic responses were determined, using the comet, micronucleus and cytotoxicity assays in HepG2 cells and the Salmonella mutagenicity assay. In a previous study it was found that the surfactant Emulsogen could contribute to the low mineralization of the dyes (60% after 4h of treatment), which, in turn, seems to account for the mutagenicity of the products generated. Thus this surfactant was not added to the chloride medium in order to avoid this interference. The photoelectrocatalytic method presented rapid discoloration and the TOC reduction was ≥87% after 240min of treatment, showing that photoelectrocatalysis is able to mineralize the dyes tested. The method was also efficient in removing the mutagenic activity and cytotoxic effects of these three dyes. Thus it was concluded that photoelectrocatalysis was a promising method for the treatment of aqueous samples. © 2013 Elsevier Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Oxidative dissolution of chalcopyrite at ambient temperatures is generally slow and subject to passivation, posing a major challenge for developing bioleaching applications for this recalcitrant mineral. Chloride is known to enhance the chemical leaching of chalcopyrite, but much of this effect has been demonstrated at elevated temperatures. This study was undertaken to test whether 100-200 mM Na-chloride enhances the chemical and bacterial leaching of chalcopyrite in shake flasks and stirred tank bioreactor conditions at mesophilic temperatures. Acidithiobacillus ferrooxidans, Acidithiobacillus thiooxidans and abiotic controls were employed for the leaching experiments. Addition of Na-chloride to the bioleaching suspension inhibited the formation of secondary phases from chalcopyrite and decreased the Fe(III) precipitation. Neither elemental S nor secondary Cu-sulfides were detected in solid residues by X-ray diffraction. Chalcopyrite leaching was enhanced when the solution contained bacteria, ferrous iron and Na-chloride under low redox potential (< 450 mV) conditions. Scanning electron micrographs and energy-dispersive analysis of X-rays revealed the presence of precipitates that were identified as brushite and jarosites in solid residues. Minor amounts of gypsum may also have been present. Electrochemical analysis of solid residues was in concurrence of the differential effects between chemical controls, chloride ions, and bacteria. Electrochemical impedance spectroscopy was used to characterize interfacial changes on chalcopyrite surface caused by different bioleaching conditions. In abiotic controls, the impedance signal stabilized after 28 days, indicating the lack of changes on mineral surface thereafter, but with more resistive behavior than chalcopyrite itself. For bioleached samples, the signal suggested some capacitive response with time owing to the formation of less conductive precipitates. At Bode-phase angle plots (middle frequency), a new time constant was observed that was associated with the formation of jarosite, possibly also with minor amount or elemental S, although this intermediate could not be verified by XRD. Real impedance vs. frequency plots indicated that the bioleaching continued to modify the chalcopyrite/solution interface even after 42 days. © 2013 The Authors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the current article, we studied the effect of yttrium [Y3+] ions' substitution on the structure and electric behavior of barium zirconate titanate (BZT) ceramics with a general formula [Ba1-x Y 2x/3](Zr0.25Ti0.75)O3 (BYZT) with [x = 0, 0.025, 0.05] which were prepared by the solid-state reaction method. X-ray diffraction patterns indicate that these ceramics have a single phase with a perovskite-type cubic structure. Rietveld refinement data confirmed [BaO 12], [ZrO6], [TiO6], [YO6] clusters in the cubic lattice. The Y3+ ions' effects on the electric conductivity behavior of BZT ceramics as a function of temperature and frequency are described, which are based on impedance spectroscopy analyses. The complex impedance plots display a double semicircle which highlights the influences of grain and grain boundary on the ceramics. Impedance analyses showed that the resistance decreased with the increasing temperature and resulted in a negative temperature coefficient of the resistance property in all compositions. Modulus plots represent a non-Debye-type dielectric relaxation which is related to the grain and grain boundary as well as temperature-dependent electric relaxation phenomenon and an enhancement in the mobility barrier by Y3+ ions. Moreover, the electric conductivity increases with the replacement of Ba 2+ by Y3+ ions may be due to the rise in oxygen vacancies. © 2013 The Minerals, Metals & Materials Society and ASM International.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pós-graduação em Química - IQ

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Anatomical specimens used in human or veterinary anatomy laboratories are usually prepared with formaldehyde (a cancerous and teratogenic substance), glycerin (an expensive and viscous fluid), or ethanol (which is flammable). This research aimed to verify the viability of an aqueous 30% sodium chloride solution for preservation of anatomical specimens previously fixed with formaldehyde. Anatomical specimens of ruminant, carnivorous, equine, swine and birds were used. All were previously fixed with an aqueous 20% formaldehyde solution and held for 7days in a 10% aqueous solution of the same active ingredient. During the first phase of the experiment, small specimens of animal tissue previously fixed in formaldehyde were distributed in vials with different concentrations of formaldehyde, with or without 30% sodium chloride solution, a group containing only 30% sodium chloride, and a control group containing only water. During this phase, no contamination was observed in any specimen containing 30% sodium chloride solution, whether alone or in combination with different concentrations of formaldehyde. In the second phase of the experiment, the 30% sodium chloride solution, found to be optimal in the first phase of the experiment, was tested for its long-term preservation properties. For a period of 5years, the preserved specimens were evaluated three times a week for visual contamination, odors, and changes in color and texture. There was no visual contamination or decay found in any specimen. Furthermore, no strange odors, or changes in color or softness were noted. The 30% sodium chloride solution was determined to be effective in the preservation of anatomic specimens previously fixed in formaldehyde.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents results describing the physical, mechanical, and thermal properties (melt flow index - MFI and oxidative induction time - OIT) of high density polyethylene and poly (vinyl chloride) after weathering exposure (6, 12, 18, and 30 months). The materials exposed were geomembranes of two thicknesses: 1.0 and 2.0 mm (PVC) and 0.8 and 2.5 mm (HDPE). The climate parameters (average) obtained were 25 degrees C (temperature), 93 mm (precipitation), 66% (relative humidity), and 19 MJ/m(2). day (intensity of global radiation). Some results showed, for instance, that the behavior of the geomembranes changed after the exposures. A few minor variations in physical properties occurred. The density and thickness, for instance, varied 0.5-1.0% (average) for both the PVC and HDPE geomembranes. The mechanical properties changed as a function of the period of exposure. In general, some decreases were verified by the deformation of PVC. The samples became more rigid. In contrast, HDPE geomembranes became more ductile. Despite the variations in elasticity, some increases in deformability were verified. An MFI test showed some degradation in HDPE geomembranes. OIT tests revealed small values for both intact and exposed samples.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Structural durability is an important design criterion, which must be assessed for every type of structure. In this regard, especial attention must be addressed to the durability of reinforced concrete (RC) structures. When RC structures are located in aggressive environments, its durability is strongly reduced by physical/chemical/mechanical processes that trigger the corrosion of reinforcements. Among these processes, the diffusion of chlorides is recognized as one of major responsible of corrosion phenomenon start. To accurate modelling the corrosion of reinforcements and to assess the durability of RC structures, a mechanical model that accounts realistically for both concrete and steel mechanical behaviour must be considered. In this context, this study presents a numerical nonlinear formulation based on the finite element method applied to structural analysis of RC structures subjected to chloride penetration and reinforcements corrosion. The physical nonlinearity of concrete is described by Mazars damage model whereas for reinforcements elastoplastic criteria are adopted. The steel loss along time due to corrosion is modelled using an empirical approach presented in literature and the chloride concentration growth along structural cover is represented by Fick's law. The proposed model is applied to analysis of bended structures. The results obtained by the proposed numerical approach are compared to responses available in literature in order to illustrate the evolution of structural resistant load after corrosion start. (C) 2014 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This experiment aim was to evaluate the contamination of the trace elements (TE) arsenic, barium, cadmium, chromium, copper, mercury, molybdenum, nickel, lead, selenium, and zinc considered in the CONAMA resolution 375 after 13 years long using sewage sludge (SS) as fertilizer in two soils: an Eutroferric Clayed Red Latosol (Rhodic Eutrudox - RE) and a Dystrophic Red Latosol (Typic Haplorthox - TH). Experiment in the field under maize cultivation had four treatments (0, 5, 10, and 20 t of SS ha(-1), dry weight), five replications and an experimental design in randomized blocks. The agrochemicals (dolomitic limestone, single superphosphate, and potassium chloride), SS, soils, and the certified reference materials were digested according to the USEPA 3051A method and the chemical elements were quantified by ICP OES. The TE contents found in the agrochemicals used should not cause immediate environmental impact. The higher TE values were found in the RE and they did not reach the agricultural (more stringent) Investigation Level (IL) yet, according to 420 CONAMA resolution. Persisting the actual SS fertilization amount applied in the soil and the TE concentration in the SS is foreseen that Ba, Cd, Cr, Cu, Ni, and Zn will be the first elements to reach the IL in the RE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lead zirconate titanate, with Zr/Ti ratio of 53/47 was prepared by the polymeric precursor method. It was investigated the barium (II) modification at 0.0, 0.2, 0.4 and 0.6 mol% in substitution to the lead (II) cation in A site of perovskite structure. The powder samples were characterized by XRD and the diffraction patterns were used to Rietveld refinement. The percentages of tetragonal and rhombohedral phases and a systematic study of the effect of barium (II) on the morphology and the dielectric properties of PZT were carried out. The results showed that the tetragonal phase is favored and the ceramic density is improved with the barium (II) insertion. The Curie temperature (Tc) is increased besides the slight reduction of dielectric constant (Kc).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study evaluated the effect of the addition of 5% calcium chlorite (CaCl2) on pH values in calcium hydroxide pastes (CH), with or without 2% chlorhexidine digluconate (CHX) used as vehicle, in several periods analysis. Polyethylene tubes were filled with CH mixed with water (G1), 2% CHX solution (G2) or gel (G3), or CHX solution or gel with 5% CaCl2 (G4 and G5, respectively). All tubes were individually immersed in distilled water. After 12, 24 hours, 7, 14 and 28 days, pH value was evaluated directly in water which the tubes were stored. Data were submitted to ANOVA and Tukey tests (α=0.05). In 24 hs and 14 days, pH values were similar to all groups. In 12 hs, the G1 presented lower pH value than other groups except to G4 (p < 0.05), and G4 presented lower pH value than G5 (p < 0.05). In 7 days, G1 presented lower pH value than G4 and G5 (p < 0.05). In 28 days, G1 and G5 presented lower pH values than G2 and G4 (p < 0.05) and among other groups there are no statistical differences (p > 0.05). The pH values increased in long-term analysis to all CH pastes. The association of 5% calcium chloride with 2% CHX solution as vehicle of CH paste provided a pH value increase in relation to CH mixed with distilled water. The CHX gel interfered negatively on pH value in comparison to CHX solution when mixed with CaCl2.