182 resultados para anharmonic oscillator


Relevância:

10.00% 10.00%

Publicador:

Resumo:

We use a five-dimensional approach to Galilean covariance to investigate the non-relativistic Duffin-Kemmer-Petiau first-order wave equations for spinless particles. The corresponding representation is generated by five 6 × 6 matrices. We consider the harmonic oscillator as an example.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We discuss the relationship between exact solvability of the Schroedinger equation, due to a spatially dependent mass, and the ordering ambiguity. Some examples show that, even in this case, one can find exact solutions. Furthermore, it is demonstrated that operators with linear dependence on the momentum are nonambiguous. (C) 2000 Elsevier Science B.V.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The regular-geometric-figure solution to the N-body problem is presented in a very simple way. The Newtonian formalism is used without resorting to a more involved rotating coordinate system. Those configurations occur for other kinds of interactions beyond the gravitational ones for some special values of the parameters of the forces. For the harmonic oscillator, in particular, it is shown that the N-body problem is reduced to N one-body problems.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We apply a five-dimensional formulation of Galilean covariance to construct non-relativistic Bhabha first-order wave equations which, depending on the representation, correspond either to the well known Dirac equation (for particles with spin 1/2) or the Duffin-Kemmer-Petiau equation (for spinless and spin 1 particles). Here the irreducible representations belong to the Lie algebra of the 'de Sitter group' in 4 + 1 dimensions, SO(5, 1). Using this approach, the non-relativistic limits of the corresponding equations are obtained directly, without taking any low-velocity approximation. As a simple illustration, we discuss the harmonic oscillator.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A simple constant-current electrocutaneous stimulator for high-impedance loads using low-cost, standard high-voltage components is presented. A voltage-regulator powers an oscillator built across the primary of a transformer whose secondary delivers, after rectification, the high-voltage supply to switched current-mirrors in the driving stage. Since the compliance high-voltage is proportional to the stimulation current, overall power consumption is minimized. By adjusting the regulated voltage, control of the pulsed-current amplitude is achieved. A prototype with readily available components features stimulation currents of amplitude and pulsewidth in the range 0≤Iskin≤20mA and 50μs ≤Tpulse≤1ms, respectively. Pulse-repetition spans from 1 Hz to 10Hz. Worst-case ripple is 3.7% @Iskin=1mA. Measured pulse fall-time is shorter than 32μs. Overall consumption is 4.4W @Iskin=20mA. Subject isolation from line is 4KV.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A general form for ladder operators is used to construct a method to solve bound-state Schrödinger equations. The characteristics of supersymmetry and shape invariance of the system are the start point of the approach. To show the elegance and the utility of the method we use it to obtain energy spectra and eigenfunctions for the one-dimensional harmonic oscillator and Morse potentials and for the radial harmonic oscillator and Coulomb potentials.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The chaotic oscillation in an attractive Bose-Einstein condensate (BEC) under an impulsive force was discussed using mean-field Gross-Pitaevskii (GP) equation. It was found that sustained chaotic oscillation resulted in a BEC under the action of an impulsive force generated by suddenly changing the interatomic scattering length or the harmonic oscillator trapping potential. The analysis suggested that the final state interatomic attraction played an important role in the generation of the chaotic dynamics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The quantitative effect in the maximum number of particles and other static observables was determined. A deviation in the harmonic trap potential that is effective only outside the central part of the potential, with the addition of a term that is proportional to a cubic or quartic power of the distance was considered. Results showed that this study could be easily transferred to other trap geometries to estimate anharmonic effects.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The energy states of the confined harmonic oscillator and the Hulthén potentials are evaluated using the Variational Method associated to Supersymmetric Quantum Mechanics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this work, the linear and nonlinear feedback control techniques for chaotic systems were been considered. The optimal nonlinear control design problem has been resolved by using Dynamic Programming that reduced this problem to a solution of the Hamilton-Jacobi-Bellman equation. In present work the linear feedback control problem has been reformulated under optimal control theory viewpoint. The formulated Theorem expresses explicitly the form of minimized functional and gives the sufficient conditions that allow using the linear feedback control for nonlinear system. The numerical simulations for the Rössler system and the Duffing oscillator are provided to show the effectiveness of this method. Copyright © 2005 by ASME.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, the dynamical response of a coupled oscillator is investigated, taking in consideration the nonlinear behavior of a SMA spring coupling the two oscillators. Due to the nonlinear coupling terms, the system exhibits both regular and chaotic motions. The Poincaré sections for different sets of coupling parameters are verified. © 2011 World Scientific Publishing Company.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper discusses the dynamic behaviour of a nonlinear two degree-of-freedom system consisting of a harmonically excited linear oscillator weakly connected to a nonlinear attachment that behaves as a hardening Duffing oscillator. A system which behaves in this way could be a shaker (linear system) driving a nonlinear isolator. The mass of the nonlinear system is taken to be much less than that in the linear system and thus the nonlinear system has little effect on the dynamics of the linear system. Of particular interest is the situation when the linear natural frequency of the nonlinear system is less than the natural frequency of the linear system such that the frequency response curve of the nonlinear system bends to higher frequencies and thus interacts with the resonance frequency of the linear system. It is shown that for some values of the system parameters a complicated frequency response curve for the nonlinear system can occur; closed detached curves can appear as a part of the overall amplitude-frequency response. The reason why these detached curves appear is presented and approximate analytical expressions for the jump-up and jump-down frequencies of the system under investigation are given.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Eigenstates of a particle in a localized and unconfined harmonic potential well are investigated. Effects due to the variation of the potential parameters as well as certain results from asymptotic expansions are discussed. © 2012 Springer Science+Business Media, LLC.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The dissociation dynamics of heteronuclear diatomic molecules induced by infrared laser pulses is investigated within the framework of the classical driven Morse oscillator. The interaction between the molecule and the laser field described in the dipole formulation is given by the product of a time-dependent external field with a position-dependent permanent dipole function. The effects of changing the spatial range of the dipole function in the classical dissociation dynamics of large ensembles of trajectories are studied. Numerical calculations have been performed for distinct amplitudes and carrier frequencies of the external pulses and also for ensembles with different initial energies. It is found that there exist a set of values of the dipole range for which the dissociation probability can be completely suppressed. The dependence of the dissociation on the dipole range is explained through the examination of the Fourier series coefficients of the dipole function in the angle variable of the free system. In particular, the suppression of dissociation corresponds to dipole ranges for which the Fourier coefficients associated with nonlinear resonances are null and the chaotic region in the phase space is reduced to thin layers. In this context, it is shown that the suppression of dissociation of heteronuclear molecules for certain frequencies of the external field is a consequence of the finite range of the corresponding permanent dipole. © 2013 American Physical Society.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper the dynamics of the ideal and non-ideal Duffing oscillator with chaotic behavior is considered. In order to suppress the chaotic behavior and to control the system, a control signal is introduced in the system dynamics. The control strategy involves the application of two control signals, a nonlinear feedforward control to maintain the controlled system in a periodic orbit, obtained by the harmonic balance method, and a state feedback control, obtained by the state dependent Riccati equation, to bring the system trajectory into the desired periodic orbit. Additionally, the control strategy includes an active magnetorheological damper to actuate on the system. The control force of the damper is a function of the electric current applied in the coil of the damper, that is based on the force given by the controller and on the velocity of the damper piston displacement. Numerical simulations demonstrate the effectiveness of the control strategy in leading the system from any initial condition to a desired orbit, and considering the mathematical model of the damper (MR), it was possible to control the force of the shock absorber (MR), by controlling the applied electric current in the coils of the damper. © 2012 Foundation for Scientific Research and Technological Innovation.