126 resultados para UV melting
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Human activities are altering the concentrations of ozone in the troposphere and hence in the incidence of ultraviolet-B (UV-B) on Earth’s surface. Although representing only five percent of UV-B radiation striking the Earth's surface, this radiation has the potential to cause effects on biologically active molecules. Sensitivity to UV-B radiation is one of the limitations of biological control of plant pathogens in the field. The objectives of this work were to evaluate the effects of UV-B on several isolates of Clonostachys rosea, and the ability of an isolate of C. rosea, previously selected for its tolerant to UV-B radiation, to control Botrytis cinerea on strawberry leaves in controlled conditions (strawberry leaf discs). The germination of C. rosea conidia was inversely proportional to the irradiance. The most tolerant strain (LQC62) had relative germination of about 60% after irradiation of 4.2kJ/m2, and this strain was selected to be used in the subsequent studies. The data showed that even with exposure to UV-B radiation, C. rosea LQC62 controlled the pathogen. Conidial concentrations of strain LQC62 above 105 conidia/ml showed higher tolerance to UV-B radiation and increased ability to control more than 75% of the B. cinerea even with exposure to radiation. According to our results, in addition to showing less growth under UV-B, conidia of C. rosea had lower antagonistic ability. Further studies are needed to observe the tolerance of B. cinerea conidia to UV-B radiation and thereby prove that an environment with increased UV-B radiation may be favoring the pathogen due to a lower ability of C. rosea to control the pathogen in conditions of increased UV-B.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Surface treatments have been used to modify the surface of titanium alloys. The purpose of this study is to evaluate the surface of Ti-30Ta alloy after biomimetic approach associated to antibiotic incorporation. The ingots were obtained in arc melting furnace, treated and cold-worked by swaging. The surface treatment was performed in two steps: biomimetic treatment and antibiotic incorporation. For biomimetic treatment, first an alkaline treatment (NaOH 1M at 60ºC) was performed, followed by heat treatment and immersion in SBFx5 (Simulated Body Fluid) for a period of 24 hours. In order to incorporate the antibiotic, samples were immersed in a solution formed by drugs plus SBFx5 for 48 hours. The sample surfaces were analyzed by scanning electron microscopy (SEM), X-Ray diffraction (XRD), atomic force microscopy (AFM) and contact angle measurements. The release of antibiotic from coated implants was measured in phosphate buffer saline at pH 7.4 by using UV/VIS spectrometry. Results have shown changes on the surface after incorporating the drug, which is gradually co-precipitated with the Ca-P crystals, forming a uniform and rough layer on the metal surface