323 resultados para Superoxide dismutases
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
OBJECTIVES To test the hypothesis that glyco protein 91phox (gp91(phox)) subunit of nicotinamide adenine dinucleotide phosphate [NAD(P) H] oxidase is a fundamental target for physical activity to ameliorate erectile dysfunction (ED). Vascular risk factors are reported to contribute to ED. Regular physical exercise prevents cardiovascular diseases by increasing nitric oxide (NO) production and/or decreasing NO inactivation.METHODS Male Wistar rats received the NO synthesis inhibitor N(omega)-nitro-L-arginine methyl ester (L-NAME) for 4 weeks, after which animals were submitted to a run training program for another 4 weeks. Erectile functions were evaluated by in vitro cavernosal relaxations and intracavernous pressure measurements. Expressions of gp91(phox) subunit and neuronal nitric oxidase synthase in erectile tissue, as well as superoxide dismutase activity and nitrite/nitrate (NO(x)) levels were determined.RESULTS The in vitro acetylcholine-and electrical field stimulation-induced cavernosal relaxations, as well as the increases in intracavernous pressure were markedly reduced in sedentary rats treated with L-NAME. Run training significantly restored the impaired cavernosal relaxations. No alterations in the neuronal nitric oxidase synthase protein expression (and its variant penile neuronal nitric oxidase synthase) were detected. A reduction of NO(x) levels and superoxide dismutase activity was observed in L-NAME-treated animals, which was significantly reversed by physical training. Gene expression of subunit gp91(phox) was enhanced by approximately 2-fold in erectile tissue of L-NAME-treated rats, and that was restored to basal levels by run training.CONCLUSIONS Our study shows that ED seen after long-term L-NAME treatment is associated with gp91(phox) subunit upregulation and decreased NO bioavailability. Exercise training reverses the increased oxidative stress in NO-deficient rats, ameliorating the ED. UROLOGY 75: 961-967, 2010. (C) 2009 Elsevier B.V.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Changes in activities of Cu-Zn superoxide dismutase (SOD- E.C.1.15.1.1.) and lactate dehydrogenase (LDH- E.C.1.1.1.27.) and levels of copper, total protein, triglycerides, phospholipids and total lipids were investigated in pancreas of rats after intratracheal administration of NiCl2 (8.4 mumol/kg). Nickel chloride induced increased SOD activity in pancreas and erythrocytes. This elevation was related to increased copper and decreased phospholipid content in pancreas of these animals. In conclusion, the ability of an animal to tolerate nickel chloride induced damage was governed by a delicate balance between the generation of cytotoxic agents and the various pancreas defense capabilities.
Resumo:
These data suggest that an improved understanding of the relationship between high dietary carbohydrate and the rate of lipid peroxidation may give some insight into possible treatment modalities for pancreatic damages and may shed light on molecular mechanisms underlying certain pathological processes. High dietary carbohydrate lesions are age related and induced alterations on ceruloplasmin, phospholipids, total proteins, copper and zinc serum levels. Significantly increased serum and pancreatic amylase, and lipoperoxide determinations were observed in 20 month old rats. Cu-Zn superoxide dismutase was decreased in these animals. Daily injection of Cu-Zn superoxide dismutase conjugated with polyethylene glycol (SOD-PEG) prevented the serum and pancreatic changes, indicating that superoxide radical is an important intermediate to high dietary carbohydrate lesion.
Resumo:
The antimalarial properties of azomethine H represent the basis for its use as a chemotherapeutic agent. This work was carried out in order to verify the biological side effects of azomethine H and to clarify the contribution of reactive oxygen species (ROS) in this process. It was shown that azomethine H increased serum activities of amylase, alanine transaminase (ALT) and the TEARS concentrations, in rats. No changes were observed in glutathione peroxidase and catalase activities. The drug-induced tissue damage might be due to superoxide radicals (O-2(.-)), since Cu-Zn superoxide dismutase activities were increased by azomethine I-I treatment. This study allows tentative conclusions to be drawn regarding which reactive oxygen metabolites play a role in azomethine H activity. We concluded that (O-2(.-)) maybe produced as a mediator of azomethine H action.
Resumo:
Nickel compounds have high potential risk for the health of populations and for this reason their toxic effects should be urgently established. To determine the effect of nickel monosulfide in the muscle at the injection site on pancreatic, hepatic, and osteogenic lesions and the potential therapeutic effect of Cu-Zn superoxide dismutase (SOD), male Wistar rats received single intramuscular injections of nickel monosulfide (NiS - 7 mg Ni2+/Kg). A group of these experimental rats were injected intraperitoneally, with a single weekly dose of SOD covalently linked to polyethylene glycol (SOD-PEG). Rats were sacrificed at 2, 4, 6, and 8 months after Ni2+ injection. Nickel monosulfide produced tumors at the injection site. The increased phospholipid, alanine transaminase (ALT), alkaline phosphatase (ALP), and amylase levels in serum, in absence of SOD-PEG, reflected the toxic effects on pancreatic, hepatic, and osteogenic tissues of rats. SOD activity was increased in serum of rats receiving SOD-PEG throughout the experiment, and no significant difference was observed in biochemical parameters of control and experimental rats in presence of SOD- PEG. Superoxide radical generated by Ni2+ is of primary importance in the development of tumors at the injection site. Superoxide anion (O2 -) is also an important toxic intermediate with respect to hepatic, pancreatic, and osteogenic injury, since SOD-PEG has a potential therapeutic effect.
Resumo:
The role of superoxide in adriamycin-induced nephropathy (single dose; i.v. 3 mg/kg) has been studied by blocking superoxide synthesis through the administration of allopurinol (500 mg/L in drinking water). In Experiment I (EI), allopurinol administration was started 3 days prior to nephropathy induction and continued until day 14. In Experiment II (EII) allopurinol administration was started 2 weeks after nephropathy induction and was maintained until the end of the experiment (26 weeks). Affected glomeruli frequency and tubulointerstitial lesion index (TILI) were determined at Weeks 2 and 4 (EI) and Week 26 (EII). In EI, and 24 h mean proteinuria in the nephrotic control group (NCG-I) differed from that of the treated nephrotic group (TNG-I) at Week 1 (TNG = 33.3 ± 6.39 mg/24 h; NCG = 59.8 ± 6.3 mg/24 h; p < 0.05) and 2 (NCG-I = 80.0 ± 17.5 mg/24h; TNG-I = 49.1 ± 8.4 mg/24 h; p < 0.05). No glomerular alterations were observed and TILI medians were not different in both nephrotic groups at week 2 (NCG-I = 1+: TNG = 1+) and 4 (NCG = 4+; TNG = 4+). In EII, NCG-II and TNG-II presented different 24 h proteinuria values only at Week 6, (136.91 ± 22.23 mg/24 h ad 72.66 ± 10.72 mg/24 h, respectively; p < 0.05). Between nephrotic groups, there was no statistical difference in the median of affected glomeruli (CNG-II = 56%; TNG-II = 48% and TILI (NCG-II = 8+; TNG-II = 9+). Thus, allopurinol was associated with a transient reduction in proteinuria and it did not alter the progression of the nephropathy.
Resumo:
The incidence of cardiovascular disease has increased in the general population, and cardiac damage is indicated as one important cause of mortality. In addition, pollution and metal exposure have increased in recent years. For this reason, toxic effects of metals, such as nickel, and their relation to cardiac damage should be urgently established. Although free radical-mediated cellular damage and reactive oxygen species have been theorized as contributing to the nickel mechanism of toxicity, recent investigations have established that free radicals may be important contributors to cardiac dysfunction. However, there is little information on the effect of nickel exposure on markers of oxidative stress in cardiac tissue. Nickel exposure (Ni2+ 100 mg L-1 from NiSO4) significantly increased lipoperoxide and total lipid concentrations in cardiac tissue. We also observed increased serum levels of cholesterol (59%), lactate dehydrogenase (LDH-64%), and alanine transaminase (ALT-30%) in study animals. The biochemical parameters recovered to the control values with tocopherol intake (0.2 mg 200 g-1). Vitamin E alone significantly decreased the lipoperoxide concentration and increased superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) activities in the heart. Since no alterations were observed in catalase and GSH-Px activities by nickel exposure while SOD activities were decreased, we conclude that superoxide radical (O2 -) generated by nickel exposure is of primary importance in the pathogenesis of cardiac damage. Tocopherol, by its antioxidant activity, decreased the toxic effects of nickel exposure on heart of rats.
Resumo:
The presence of toxic substances in the workplace environment requires systematic evaluation of exposure and health status in exposed subjects. Cadmium is a highly toxic element found in water. Although free mediated cellular damage and reactive oxygen species (ROS), had been theorized as contributing to the cadmium mechanism of toxicity, and recent investigations have established that free radicals may be important contributors to cardiac dysfunction, there is little information on the effect of cadmium exposure on markers of oxidative stress in cardiac tissue. Cadmium exposure (Cd2+ - 100 mg/1-from CdCl2) in drinking water, during 15 days, significantly increased lipoperoxide and decreased the activities of superoxide dismutase and glutathione peroxidase. No alterations were observed in catalase activity in heart of rats with cadmium exposure. We also observed decreased glycogen and glucose concentration and increased total lipid content in cardiac tissue of rats with cadmium exposure. The decreased activities of alanine transaminase and aspartate transaminase reflected decreased metabolic protein degradation, and increased lactate dehydrogenase activity was related with increases in capacity of glycolysis. Since the metabolic pathways were altered by cadmium exposure, we can conclude that Cd2+ exposure induced ROS and initiate some series of events that occur in the heart and resulted in metabolic pathways alterations.
Resumo:
Analysis of the products of oxidative degradation of Hb S was made by methahemoglobin measurement and a count of red blood cells with Heinz bodies. Free radicals originating from oxidation cause extensive injury to erythrocytes, decreasing their useful survival period especially in Hb S carriers. The Superoxide ion (O 2) is the most responsible for the oxidation process of Hb forming membrane-bound haemachromes which afterwards evolve to Heinz bodies, damaging the membrane and provoking erythrocytes hemolysis. The results from this work showed that the SS genotype is more susceptible to the action of the free radicals than the S/Tal genotype. The β genotype has a lower oxidative susceptibility than the SS because it has only one β s mutation. The results allowed us to conclude that: a) the simple presence of Hb S, independent of its genotype and its concentration, is sufficient to produce methaemoglobin from this Hb; b) there is not a direct relationship between methaetnoglobin concentration and the Heinz bodies count; c) the intensity of Heinz bodies in the sickled erythrocytes seems to be independent of the Hb Fetal concentration; d) The genotype SS is more susceptible to Hb oxidation with the release of products of oxidative degradation; e) methaemoglobin formation in blood of people with Hb AA and Hb AS, assessed over 24, 48, 72 and 163 hourly-periods, showed greater oxidative intensity in the Hb AS compared with Hb AA.
Resumo:
Purpose: To determine whether a high energy dense diet intake increases oxidative stress and alters antioxidant enzymes in cardiac tissue. Design: A randomized, controlled study. Ninety-day-old female rats were randomly divided into two groups: one fed with a low energy dense diet (LE; 3.0 kcal g-1) and one with a high energy dense diet (HE; 4.5 kcal g-1). Materials and Methods: After 8 weeks of treatment, the animals were fasted overnight and sacrificed by decapitation. The serum was used for glucose, triacylglycerol, cholesterol, low-density lipoprotein (LDL)-cholesterol and high-density lipoprotein (HDL)-cholesterol determinations. The glycogen, lipoperoxide, lipid hydroperoxide, superoxide dismutase, glutathione peroxidase, lactate dehydrogenase, citrate synthase, total and non-protein sulphhydryl groups were determined in cardiac tissue. Results: HE decreased the myocardial glycogen content and increased the lactate dehydrogenase/citrate synthase ratio, indicating an increased glycolytic pathway and a shift from myocardial aerobic metabolism. HE-treated female rats showed increased lipoperoxide and hydroperoxide levels in cardiac tissue. Although no alterations were observed in the total sulphhydryl group and superoxide dismutase activities, glutathione peroxidase and the non-protein sulphhydryl group were significantly decreased in HE-treated animals. Conclusions: Although no alterations were observed in energy intake, HE induced an increased intake of fat and carbohydrate and an increased rate of weight gain. HE intake induced alterations in markers of oxidative stress in cardiac tissue. Hydrogen peroxide is an important toxic intermediate in the development of cardiac oxidative stress by HE. The specific nutrient content, such as fat and carbohydrate, rather than caloric intake, appears to be the main process inducing oxidative stress in HE-treated female rats.
Resumo:
Purpose: To determine the effect of dietary restriction on metabolic pathways and the relationship of the metabolic shifting on antioxidant enzymes in cardiac tissue. Design: Randomized, controlled study. Male rats at 60 days old were randomly divided into four groups. Materials and Methods: The rats of control groups C30 and C60 were given free access to the diet over 30 and 60 days. The rats of the DR30 group were fed 60% of the chow consumed by the control groups over 30 days. The animals of the DR60 group ate 60% of the amount consumed by the C60 group over 60 days. Serum was used for total protein, lactate dehydrogenase (LDH), alanine aminotransferase (ALT) and aspartate aminotransferase (AST). Protein, glycogen, total lipids, superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), LDH, AST and ALT were determined in cardiac tissue. Results: Dietary restriction induced diminished serum and cardiac LDH activities. AST activities were lower in the serum and cardiac muscle of the DR60 animals. Dietary restriction induced elevated total lipid concentrations in cardiac muscle. No significant differences were observed in total protein and glycogen content among the groups. Antioxidant enzyme determinations demonstrated increased cardiac GSH-Px activities in the DR60 animals and increased SOD activities in the cardiac tissue of both feed-restricted groups. Conclusions: Dietary restriction was protective against oxidative stress in the heart by improving cardiac endogenous antioxidant defences and shifting the metabolic pathway for energy production.