124 resultados para Simultaneous excretion


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study, we investigated an interaction between noradrenergic and cholinergic pathways of the medial septal area (MSA) on the control of water intake and urinary electrolyte excretion by means of injection of their respective agonists. Noradrenaline (a nonspecific α-adrenergic agonist) and clonidine (an α2-adrenergic agonist), but not phenylephrine (an α1-adrenergic agonist), induced natriuresis and kaliuresis. α-Adrenergic activation had no effect on the natriuresis and kaliuresis induced by carbachol (a cholinergic agonist) and it inhibited the antinatriuresis and antikaliuresis induced by isoproterenol (a ß-adrenergic agonist). Interactions related to volume excretion are complex. α-Adrenergic activation induced a mild diuresis and inhibited the antidiuresis induced by isoproterenol, but phenylephrine combined with carbachol induced antidiuresis. The water intake induced by carbachol was inhibited by clonidine and noradrenaline, but not phenylephrine. These results show an asymmetry in the interaction between α-adrenergic and cholinergic receptors concerning water intake and electrolyte excretion. © 1992.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present experiments were conducted to investigate the role of the α1-, α2- and β-adrenergic receptors of the median preoptic area (MnPO) on the water intake and urinary electrolyte excretion, elicited by central injections of angiotensin II (ANG II). Prazosin (an α1-adrenergic receptor antagonist) and yohimbine (an α2-adrenergic receptor antagonist) antagonized the water ingestion, Na +, K +, and urine excretion induced by ANG II. Administration of propranolol, a β-adrenergic receptor antagonist increased the Na +, K +, and urine excretion induced by ANG II. Previous treatment with prazosin and yohimbine reduced the pressor responses to ANG II. These results suggest that the adrenergic neurotransmission in the MnPO may actively participate in ANG II-induced dipsogenesis, natriuresis, kaliuresis, diuresis and pressor responses in a process that involves α1-, α2-, and β-adrenoceptors.