205 resultados para STRANGE QUARK SUPPRESSION
Resumo:
Phase separation suppression due to external biaxial strain is observed in InxGa1-xN alloy layers by Raman scattering spectroscopy. The effect is taking place in thin epitaxial layers pseudomorphically grown by molecular-beam epitaxy on unstrained GaN(001) buffers. Ab initio calculations carried out for the alloy free energy predict and Raman measurements confirm that biaxial strain suppress the formation of phase-separated In-rich quantum dots in the InxGa1-xN layers. Since quantum dots are effective radiative recombination centers in InGaN, we conclude that strain quenches an important channel of light emission in optoelectronic devices based on pseudobinary group-III nitride semiconductors. (C) 2002 American Institute of Physics.
Resumo:
A pon stimulation by contralateral, ipsilateral or bilateral noise, the medial olivocochlear efferent tract changes the amplitude of otoacoustic emissions relative to the tested ear, reducing or removing it; this resulted in a reduction/suppression effect of otoacoustic emissions. Differences in patterns of elimination/reduction of otoacoustic emissions between ears have been documented worldwide; there are, however, no Brazilian studies investigating the effect of lateral dominance.Aims: To compare the effect of the presence of deletion/reduction of otoacoustic emissions and their amplitude relative to lateral dominance in normal hearing adults.Methods: A clinical and experimental study. The sample comprised 75 individuals. The methodology was conventional - linear click intensity of 60 dB SPL; white noise was contralateral stimulation at 60 dB SPL.Description of results: There were no statistically significant differences between right and left ear results, in terms of asymmetry of the degree of otoacoustic emissions and the presence of suppression/reduction.Conclusion: There is no lateral dominance in the degree of otoacoustic emissions in the presence of suppression/reduction in the study population.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
We investigate the capability of an ey collider to unravel the hadronic content of the photon. The experimental problem for probing the gluonic structure of the photon is that small-x triggers overwhelmingly select soft photons rather than soft gluons in hard photons. We show that the problem can be finessed in experiments where laser back-scattering is used to prepare a source of very hard photons. We illustrate their power for studying the parton distributions of the photon and, specifically, for separating the quark and gluon components in events where dijets, jet-y pairs, and heavy quark pairs are produced.
Resumo:
Starting from the Fock space representation of hadron bound states in a quark model, a change of representation is implemented by a unitary transformation such that the composite hadrons are redescribed by elementary-particle field operators. Application of the unitary transformation to the microscopic quark Hamiltonian gives rise to effective hadron-hadron, hadron-quark, and quark-quark Hamiltonians. An effective baryon Hamiltonian is derived using a simple quark model. The baryon Hamiltonian is free of the post-prior discrepancy which usually plagues composite-particle effective interactions.
Resumo:
We present a model to describe inclusive meson production in e+e- reactions based on a quark cascade approach whose formulation is put in terms of diffusion equations for three quark flavors (u, d, s). These equations are solved by using a formalism previously developed for the problem of the electromagnetic cascade generated in the atmosphere by cosmicray interactions. The obtained solutions are given in terms of a combination of power-law functions whose profiles are adequate to describe the characteristics observed in the inclusive spectrum of mesons.
Resumo:
The electromagnetic tensor for inclusive electron scattering off the pion Wμν for momentum transfers such that q+ = 0, (q+ = q0 + q3) is shown to obey a sum-rule for the component W++. From this sum-rule, one can define the quark-antiquark correlation function in the pion, which characterizes the transverse distance distribution between the quark and antiquark in the light-front pion wave-function. Within the realistic models of the relativistic pion wave function (including instanton vacuum inspired wave function) it is shown that the value of the two-quark correlation radius (rqq̄) is near twice the pion electromagnetic radius (rπ), where rπ ≈ 2/3 fm. We also define the correlation length lcorr where the two-particle correlation have an extremum. The estimation of lcorr ≈ 0.3-0,5 fm is very close to estimations from instanton models of QCD vacuum. It is also shown that the above correlation is very sensitive to the pion light-front wave-function models. © 1997 Elsevier Science B.V.
Resumo:
The binding energy of nuclear matter including exchange and pionic effects is calculated in a quark-meson coupling model with massive constituent quarks. As in the case with elementary nucleons in QHD, exchange effects are repulsive. However, the coupling of the mesons directly to the quarks in the nucleons introduces a new effect on the exchange energies that provides an extra repulsive contribution to the binding energy. Pionic effects are not small. Implications of such effects on observables are discussed. © 1998 Published by Elsevier Science B.V. All rights reserved.
Resumo:
We show that a hadron gas model with continuous particle emission instead of freeze-out may solve some of the problems (high values of the freeze-out density and specific net charge) that one encounters in the latter case when studying strange particle ratios such as those from the experiment WA85. This underlines the necessity to understand better particle emission in hydrodynamics to be able to analyze data. It also reopens the possibility of a quark-hadron transition occurring with phase equilibrium instead of explosively.
Resumo:
The mean field description of nuclear matter in the quark-meson coupling model is improved by the inclusion of exchange contributions (Fock terms). The inclusion of Fock terms allows us to explore the momentum dependence of meson-nucleon vertices and the role of pionic degrees of freedom in matter. It is found that the Fock terms maintain the previous predictions of the model for the in-medium properties of the nucleon and for the nuclear incompressibility. The Fock terms significantly increase the absolute values of the single-particle, four-component scalar and vector potentials, a feature that is relevant for the spin-orbit splitting in finite nuclei. © 1999 Elsevier Science B.V.
Resumo:
The strangeness content of the nucleon is determined from a statistical model using confined quark levels, and is shown to have a good agreement with the corresponding values extracted from experimental data. The quark levels are generated in a Dirac equation that uses a linear confining potential (scalar plus vector). With the requirement that the result for the Gottfried sum rule violation, given by the New Muon Collaboration (NMC), is well reproduced, we also obtain the difference between the structure functions of the proton and neutron, and the corresponding sea quark contributions.
Resumo:
We investigate the effect of different forms of relativistic spin coupling of constituent quarks in the nucleon electromagnetic form factors. The four-dimensional integrations in the two-loop Feynman diagram are reduced to the null-plane, such that the light-front wave function is introduced in the computation of the form factors. The neutron charge form factor is very sensitive to different choices of spin coupling schemes, once its magnetic moment is fitted to the experimental value. The scalar coupling between two quarks is preferred by the neutron data, when a reasonable fit of the proton magnetic momentum is found. (C) 2000 Elsevier Science B.V.
Resumo:
The quark-meson-coupling model is used to study droplet formation from the liquid-gas phase transition in cold asymmetric nuclear matter. The critical density and proton fraction for the phase transition are determined in the mean field approximation. Droplet properties are calculated in the Thomas-Fermi approximation. The electromagnetic field is explicitly included and its effects on droplet properties are studied. The results are compared with the ones obtained with the NL1 parametrization of the non-linear Walecka model. © 2000 Elsevier Science B.V.
Resumo:
Using the Cornwall-Jackiw-Tomboulis effective potential for composite operators we compute the QCD vacuum energy as a function of the dynamical quark and gluon propagators, which are related to their respective condensâtes as predicted by the operator product expansion. The identification of this result to the vacuum energy obtained from the trace of the energy-momentum tensor allows us to study the gluon self-energy, verifying that it is fairly represented in the ultraviolet by the asymptotic behavior predicted by the operator product expansion, and in the infrared it is frozen at its asymptotic value at one scale of the order of the dynamical gluon mass. We also discuss the implications of this identity for heavy and light quarks. For heavy quarks we recover, through the vacuum energy calculation, the relation nij{filif)-îi(asl'n)GlivGllv obtained many years ago with QCD sum rules. ©2000 The American Physical Society.