176 resultados para NEUTRON EMISSION


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The two fundamental approaches to fission-track dating involve either an explicit determination of the thermal neutron fluence (φ-method) or a calibration against age standards (ζ-method). The neutron fluence measurements are carried out with metal-activation monitors or with uranium-fission monitors, co-irradiated with the samples. Uranium-fission monitors consist of either a thin mono-atomic) film, or a thick fission source (standard uranium glass) irradiated against a muscovite external track detector. In this work, different techniques for performing neutron-fluence measurements were compared: based on thin-film calibration, based on thick-source calibration, and based on gamma spectrometry of co-irradiated metal monitors (Au, Co). The results suggest that more experiments are needed to make all calibrations consistent, including new measurements of the length of etched induced tracks in mica. Also the standard glass calibration carried out with thin films should be confirmed with a greater number of calibrating irradiations. © 2013 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A study was undertaken about the structural and photoluminescent properties at room temperature of CaCu3Ti4O12 (CCTO) powders synthesized by a soft chemical method and heat treated between 300 and 800 °C. The decomposition of precursor powder was followed by thermogravimetric analysis (TG-DTA), X-ray diffraction (XRD), Fourier transform infrared (FT-IR), Fourier transform Raman (FT-Raman) and photoluminescence (PL) measurements. XRD analyses revealed that the powders annealed at 800 °C are becoming ordered and crystallize in the cubic structure. The most intense PL emission was obtained for the sample calcined at 700 °C, which is not highly disordered (300-500 °C) and neither completely ordered (800 °C). From the spectrum it is clearly visible that the lowest wavelength peak is placed around 480 nm and the highest wavelength peak at about 590 nm. The UV/vis absorption spectroscopy measurements showed the presence of intermediate energy levels in the band gap of structurally disordered powders. © 2012 Elsevier Ltd and Techna Group S.r.l.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A recently proposed scenario for baryogenesis, called post-sphaleron baryogenesis (PSB), is discussed within a class of quark-lepton unified framework based on the gauge symmetry SU(2)L×SU(2) R×SU(4)c realized in the multi-TeV scale. The baryon asymmetry of the Universe in this model is produced below the electroweak phase transition temperature after the sphalerons have decoupled from the Hubble expansion. These models embed naturally the seesaw mechanism for neutrino masses and predict color-sextet scalar particles in the TeV range which may be accessible to the LHC experiments. A necessary consequence of this scenario is the baryon-number-violating ΔB=2 process of neutron-antineutron (n-n̄) oscillations. In this paper we show that the constraints of PSB, when combined with the neutrino oscillation data and restrictions from flavor changing neutral currents mediated by the colored scalars, imply an upper limit on the n-n̄ oscillation time of 5×1010 sec regardless of the quark-lepton unification scale. If this scale is relatively low, in the (200-250) TeV range, τn-n̄ is predicted to be less than 1010 sec, which is accessible to the next generation of proposed experiments. © 2013 American Physical Society.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Experiments of biomass combustion were performed to determine whether specimen size, tray inclination, or combustion air flow rate was the factor that most affects the emission of carbon dioxide, carbon monoxide, and methane. The chosen biomass was Eucalyptus citriodora, a very abundant species in Brazil, utilized in many industrial applications, including combustion for energy generation. Analyses by gas chromatograph and specific online instruments were used to determine the concentrations of the main emitted gases, and the following figures were found for the emission factors: 1400 ± 101 g kg-1 of CO2, 50 ± 13 g kg-1 of CO, and 3.2 ± 0.5 g kg-1 of CH4, which agree with values published in the literature for biomass from the Amazon rainforest. Statistical analysis of the experiments determined that specimen size most significantly affected the emission of gases, especially CO2 and CO. •Statistical analysis to determine effects on emission factors.•CO2, CO, CH4 emission factors determined for combustion of Eucalyptus.•Laboratory results agreed with data for Amazonian biomass combustion in field tests.•Combustion behavior under flaming and smoldering was analyzed. © 2013 Elsevier Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper proposes a straightforward compromising method to determine the output power of all committed units during the scheduling time horizon. Unlike the conventional methods that work based on a constant pollution control cost (CPCC), this method works based on the system topology such as demand, minimum cost and minimum output emission of the system. In order to have a meaningful compromise between costs and emission in economic and emission dispatch (EED) problem, a flexible pollution control cost (FPCC) is proposed. Also a dynamic economic emission dispatch (DEED) approach is considered where the ramping constraints couple the scheduling hours; the inclusion of valve-point effect makes the DEED modeling more practical. The validity and effectiveness of the unproblematic FPCC approach is verified through an IEEE 30-bus test system with 6 unit for the 6-hour scheduling horizon. © 2013 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Appropriate management of agricultural crop residues could result in increases on soil organic carbon (SOC) and help to mitigate gas effect. To distinguish the contributions of SOC and sugarcane (Saccharum spp.) residues to the short-term CO2-C loss, we studied the infl uence of several tillage systems: heavy offset disk harrow (HO), chisel plow (CP), rotary tiller (RT), and sugarcane mill tiller (SM) in 2008, and CP, RT, SM, moldboard (MP), and subsoiler (SUB) in 2009, with and without sugarcane residues relative to no-till (NT) in the sugarcane producing region of Brazil. Soil CO2-C emissions were measured daily for two weeks after tillage using portable soil respiration systems. Daily CO2-C emissions declined after tillage regardless of tillage system. In 2008, total CO2-C from SOC and/or residue decomposition was greater for RT and lowest for CP. In 2009, emission was greatest for MP and CP with residues, and smallest for NT. SOC and residue contributed 47% and 41%, respectively, to total CO2-C emissions. Regarding the estimated emissions from sugarcane residue and SOC decomposition within the measurement period, CO2-C factor was similar to sugarcane residue and soil organic carbon decomposition, depending on the tillage system applied. Our approach may define new emission factors that are associated to tillage operations on bare or sugarcane-residue-covered soils to estimate the total carbon loss.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The novel coordination polymer with the formula {[Nd2(2,5-tdc)3(dmf)2(H2O)2].dmf.H2O}n (2,5-tdc2-=2,5-thiophedicarboxylate anion and dmf=dimethylformamide) has been synthesized and characterized by thermal analysis (TG/DTA), vibrational spectroscopy (FTIR) and single crystal X-ray diffraction analysis (XRD). Structure analysis reveals that Nd(III) ions show dicapped trigonal prism coordination geometry. The 2,5-tdc2- ligands connect four Nd(III) centers, adopting (κ1 - κ1) - (κ1 - κ1) - μ4 coordination mode, generating an interesting 6-connected uninodal 3D network. Photophysical properties were studied using diffuse reflectance spectroscopy (DR) and excitation/emission spectra. The photoluminescence data show the near infrared emission (NIR) with the characteristic 4F3/2→4IJ (J=9/2, 11/2 and 13/2) transitions of Nd(III) ion, indicating that 2,5-tdc2- is able to act as a sensitizer for emission in NIR region. © 2013 Elsevier B.V.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

CCTO thin films were deposited on Pt(1 1 1)/Ti/SiO2/Si substrates using a chemical (polymeric precursor) and pressure method. Pressure effects on CCTO thin films were evaluated by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM) and optical properties which revealed that a pressure film (PF) is denser and more homogeneous than a chemical film (CF). Pressure also causes a decrease in the band gap and an increase in the photoluminescence (PL) emission of CCTO films which suggests that the pressure facilitates the displacement of Ti in the titanate clusters and the charge transference from TiO6 to [TiO5V0z], [TiO5V0z] to [CaO11V0z] and [TiO5V0z] to [CuO4]x. © 2013 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Transparent monoliths and films of urea cross-linked tripodal siloxane-based hybrids (named tri-ureasils) were prepared by the sol-gel process, under controlled atmosphere (inside a glove box) and ambient conditions and their structure and optical features were compared. X-ray diffraction data point out that all the materials are essentially amorphous and Si-29 NMR reveal an increase in the condensation degree (0.97) for the hybrids prepared under controlled atmosphere relatively to that found for those prepared under ambient conditions (0.84-0.91). The tri-ureasils are white light emitters under UV/Visible excitation (from 250 to 453 nm) being observed for the composites prepared inside the glove box a significant enhancement (60-80 %) of the absorption coefficient and higher emission quantum yield values (similar to 0.27 and similar to 0.20 for monoliths and films, respectively) relatively to those synthesized under ambient condition.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The relentless pursuit for materials containing rare earth ions with photoluminescent properties has led to several studies with applications in the development of new technologies. The main focus of this work is the preparation of Er3+-doped polycrystalline Y2O3 with photoluminescent properties using PEG as an organic precursor and heat-treated at different temperatures. The methodology used in this synthesis is highly attractive due to its high feasibility for improved technology and low cost for preparing materials. The behavior of the viscous resin has been evaluated and the final compounds exhibited the formation of a cubic polycrystalline phase, which is able to support variations in Er3+ doping concentrations up to 10 mol%, without significant changes in the polycrystalline parameters. The values of the nanocrystallite size calculated by Scherrer's equation showed direct dependence on the heat-treatment temperature as well as the Er3+ concentration. Intense emission in the visible region under excitation at 980 nm was attributed to an upconversion phenomenon assigned to the intraconfigurational f-f transitions of Er3+ ions. The upconversion mechanism was investigated and it was demonstrated that the higher intense emission in the red region in comparison to the emission in the green region is related to the crystallite size. The studies about the intensity showed the dependence of upconversion emission of power source, indicating that two-photon are responsible for the green and red photoluminescence. These polycrystalline materials exhibit properties that make them promising for use in solar energy systems, C-telecom band or solid-state laser devices. (C) 2014 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)