188 resultados para Mixed integer nonlinear programming
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Este trabalho apresenta um modelo de otimização-simulação aplicado em um estudo de caso real no setor de cilindros para laminação de uma siderúrgica, buscando melhorar o gerenciamento da área/equipamento gargalo da linha de produção. A simulação atuou em conjunto com um modelo de otimização da programação linear inteira (PLI) para melhorar o atendimento de prazo junto aos clientes em uma produção não seriada. Como resultado deste procedimento combinado da PLI e simulação, o processo produtivo foi otimizado e as filas de espera e o lead-time foram reduzidos, melhorando o atendimento aos clientes.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
This article presents a new approach to minimize the losses in electrical power systems. This approach considers the application of the primal-dual logarithmic barrier method to voltage magnitude and tap-changing transformer variables, and the other inequality constraints are treated by augmented Lagrangian method. The Lagrangian function aggregates all the constraints. The first-order necessary conditions are reached by Newton's method, and by updating the dual variables and penalty factors. Test results are presented to show the good performance of this approach.
Resumo:
This paper presents a new approach to solve the Optimal Power Flow problem. This approach considers the application of logarithmic barrier method to voltage magnitude and tap-changing transformer variables and the other constraints are treated by augmented Lagrangian method. Numerical test results are presented, showing the effective performance of this algorithm. (C) 2005 Elsevier Ltd. All rights reserved.
Resumo:
We consider Lipschitz continuous-time nonlinear optimization problems and provide first-order necessary optimality conditions of both Fritz John and Karush-Kuhn-Tucker types. (C) 2001 Elsevier B.V. Ltd. All rights reserved.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Analog networks for solving convex nonlinear unconstrained programming problems without using gradient information of the objective function are proposed. The one-dimensional net can be used as a building block in multi-dimensional networks for optimizing objective functions of several variables.
Resumo:
This paper presents the Benders decomposition technique and Branch and Bound algorithm used in the reactive power planning in electric energy systems. The Benders decomposition separates the planning problem into two subproblems: an investment subproblem (master) and the operation subproblem (slave), which are solved alternately. The operation subproblem is solved using a successive linear programming (SLP) algorithm while the investment subproblem, which is an integer linear programming (ILP) problem with discrete variables, is resolved using a Branch and Bound algorithm especially developed to resolve this type of problem.
Resumo:
A new approach to solving the Optimal Power Flow problem is described, making use of some recent findings, especially in the area of primal-dual methods for complex programming. In this approach, equality constraints are handled by Newton's method inequality constraints for voltage and transformer taps by the logarithmic barrier method and the other inequality constraints by the augmented Lagrangian method. Numerical test results are presented, showing the effective performance of this algorithm. © 2001 IEEE.
Resumo:
In this paper is presented a new approach for optimal power flow problem. This approach is based on the modified barrier function and the primal-dual logarithmic barrier method. A Lagrangian function is associated with the modified problem. The first-order necessary conditions for optimality are fulfilled by Newton's method, and by updating the barrier terms. The effectiveness of the proposed approach has been examined by solving the Brazilian 53-bus, IEEE118-bus and IEEE162-bus systems.
Resumo:
This paper presents an analyze of numeric conditioning of the Hessian matrix of Lagrangian of modified barrier function Lagrangian method (MBFL) and primal-dual logarithmic barrier method (PDLB), which are obtained in the process of solution of an optimal power flow problem (OPF). This analyze is done by a comparative study through the singular values decomposition (SVD) of those matrixes. In the MBLF method the inequality constraints are treated by the modified barrier and PDLB methods. The inequality constraints are transformed into equalities by introducing positive auxiliary variables and are perturbed by the barrier parameter. The first-order necessary conditions of the Lagrangian function are solved by Newton's method. The perturbation of the auxiliary variables results in an expansion of the feasible set of the original problem, allowing the limits of the inequality constraints to be reached. The electric systems IEEE 14, 162 and 300 buses were used in the comparative analysis. ©2007 IEEE.
Resumo:
This work presents the application of the relaxed barrier-Lagrangian function method to the optimal reactive dispatch problem, which is a nonlinear nonconvex and large problem. In this approach the inequality constraints are treated by the association of modified barrier and primal-dual logarithmic barrier method. Those constraints are transformed in equalities through positive auxiliary variables and are perturbed by the barrier parameter. A Lagrangian function is associated to the modified problem. The first-order necessary conditions are applied generating a non-linear system which is solved by Newton's method. The auxiliary variables perturbation result in an expansion of the feasible set of the original problem, allowing the limits of the inequality constraints to be reach. Numeric tests with the systems CESP 53 buses and the south-southeast Brazilian and the comparative test with the primal-dual logarithmic barrier method indicate that presented method is efficient in the resolution of optimal reactive dispatch problem.
Resumo:
Cooperative energy-transfer upconversion luminescence in Tb 3+/Yb 3+-codoped PbGeO 3-PbF 2-CdF 2 vitroceramic and its precursor glass under resonant and off-resonance infrared excitation, is investigated. Bright UV-visible emission signals around 384, 415, 438 nm, and 473-490, 545, 587, and 623 nm, identified as due to the 5D 3( 5G 6 → 7F J(J=6,5,4) and 5D 4 → 7F J(J=6,5,4,3) transitions, respectively, were readily observed. The results indicate that cooperative energy-transfer between ytterbium and terbium ions followed by excited-state absorption are the dominant upconversion excitation mechanisms herein involved. The comparison of the upconversion process in a vitroceramic sample and its glassy precursor revealed that the former present much higher upconversion efficiency. The dependence of the upconversion emission upon pump power, temperature, and doping content is also examined.
Resumo:
In practical situations, the dynamics of the forcing function on a vibrating system cannot be considered as given a priori, and it must be taken as a consequence of the dynamics of the whole system. In other words, the forcing source has limited power, as that provided by a DC motor for an example, and thus its own dynamics is influenced by that of the vibrating system being forced. This increases the number of degrees of freedom of the problem, and it is called a non-ideal problem. In this work, we considerer two non-ideal problems analyzed by using numerical simulations. The existence of the Sommerfeld effect was verified, that is, the effect of getting stuck at resonance (energy imparted to the DC motor being used to excite large amplitude motions of the supporting structure). We considered two kinds of non-ideal problem: one related to the transverse vibrations of a shaft carrying two disks and another to a piezoceramic bar transducer powered by a vacuum tube generated by a non-ideal source Copyright © 2007 by ASME.