161 resultados para MODELS ANIMAL


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A inflamação ocular é uma das principais causas de perda visual e cegueira. As uveítes constituem um grupo complexo e heterogêneo de doenças caracterizadas por inflamação dos tecidos intraoculares. O olho pode ser o único órgão envolvido ou a uveíte pode ser parte de uma doença sistêmica. A etiologia é desconhecida em um número significativo de casos, que são considerados idiopáticos. Modelos animais têm sido desenvolvidos para estudar a fisiopatogênese da uveíte autoimune devido às dificuldades na obtenção de tecidos de olhos humanos inflamados para experimentos. Na maioria desses modelos, que simulam as uveítes autoimunes em humanos, a uveíte é induzida com proteínas específicas de fotorreceptores (antígeno-S, proteína ligadora de retinoide do interfotoreceptor, rodopsina, recoverina e fosducina). Antígenos não retinianos, como proteínas associadas à melanina e proteína básica de mielina, são também bons indutores de uveíte em animais. Entender os mecanismos básicos e a patogênese dessas doenças oculares é essencial para o desenvolvimento de novas formas de tratamento das uveítes autoimunes e de novos agentes terapêuticos. Nesta revisão serão abordados os principais modelos experimentais utilizados para o estudo de doenças inflamatórias oculares autoimunes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objetivou-se com esse trabalho comparar estimativas de componentes de variâncias obtidas por meio de modelos lineares mistos Gaussianos e Robustos, via Amostrador de Gibbs, em dados simulados. Foram simulados 50 arquivos de dados com 1.000 animais cada um, distribuídos em cinco gerações, em dois níveis de efeito fixo e três valores fenotípicos distintos para uma característica hipotética, com diferentes níveis de contaminação. Exceto para os dados sem contaminação, quando os modelos foram iguais, o modelo Robusto apresentou melhores estimativas da variância residual. As estimativas de herdabilidade foram semelhantes em todos os modelos, mas as análises de regressão mostraram que os valores genéticos preditos com uso do modelo Robusto foram mais próximos dos valores genéticos verdadeiros. Esses resultados sugerem que o modelo linear normal contaminado oferece uma alternativa flexível para estimação robusta em melhoramento genético animal.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Oral candidiasis is an opportunistic infection caused by yeast of the Candida genus, primarily Candida albicans. It is generally associated with predisposing factors such as the use of immunosuppressive agents, antibiotics, prostheses, and xerostomia. The development of research in animal models is extremely important for understanding the nature of the fungal pathogenicity, host interactions, and treatment of oral mucosa! Candida infections. Many oral candidiasis models in rats and mice have been developed with antibiotic administration, induction of xerostomia, treatment with immunosuppressive agents, or the use of germ-free animals, and all these models has both benefits and limitations. Over the past decade, invertebrate model hosts, including Galleria mellonella, Caenorhanditis elegans, and Drosophila melanogaster, have been used for the study of Candida pathogenesis. These invertebrate systems offer a number of advantages over mammalian vertebrate models, predominantly because they allow the study of strain collections without the ethical considerations associated with studies in mammals. Thus, the invertebrate models may be useful to understanding of pathogenicity of Candida isolates from the oral cavity, interactions of oral microorganisms, and study of new antifungal compounds for oral candidiasis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A utilização de funções matemáticas para descrever o crescimento animal é antiga. Elas permitem resumir informações em alguns pontos estratégicos do desenvolvimento ponderal e descrever a evolução do peso em função da idade do animal. Também é possível comparar taxas de crescimento de diferentes indivíduos em estados fisiológicos equivalentes. Os modelos de curvas de crescimento mais utilizados na avicultura são os derivados da função Richards, pois apresentam parâmetros que possibilitam interpretação biológica e portanto podem fornecer subsídios para seleção de uma determinada forma da curva de crescimento em aves. Também pode-se utilizar polinômios segmentados para descrever as mudanças de tendência da curva de crescimento animal. Entretanto, existem importantes fatores de variação para os parâmetros das curvas, como a espécie, o sistema de criação, o sexo e suas interações. A adequação dos modelos pode ser verificada pelos valores do coeficiente de determinação (R2), do quadrado médio do resíduo (QM res), do erro de predição médio (EPm), da facilidade de convergência dos dados e pela possibilidade de interpretação biológica dos parâmetros. Estudos envolvendo modelagem e descrição da curva de crescimento e seus componentes são amplamente discutidos na literatura. Porém, programas de seleção que visem a progressos genéticos para a forma da curva não são mencionados. A importância da avaliação dos parâmetros dos modelos de curvas de crescimento é ainda mais relevante já que os maiores ganhos genéticos para peso estão relacionados com seleção para pesos em idades próximas ao ponto de inflexão. A seleção para precocidade pode ser auxiliada com base nos parâmetros do modelo associados à variáveis que descrevem esta característica genética dos animais. Esses parâmetros estão relacionados a importantes características produtivas e reprodutivas e apresentam magnitudes diferentes, de acordo com a espécie, o sexo e o modelo utilizados na avaliação. Outra metodologia utilizada são os modelos de regressão aleatória, permitindo mudanças graduais nas covariâncias entre idades ao longo do tempo e predizendo variâncias e covariâncias em pontos contidos ao longo da trajetória estudada. A utilização de modelos de regressões aleatórias traz como vantagem a separação da variação da curva de crescimento fenotípica em seus diferentes efeitos genético aditivo e de ambiente permanente individual, mediante a determinação dos coeficientes de regressão aleatórios para esses diferentes efeitos. Além disto, não há necessidade de utilizar fatores de ajuste para a idade. Esta revisão teve por objetivos levantar os principais modelos matemáticos frequentistas utilizados no estudo de curvas de crescimento de aves, com maior ênfase nos empregados com a finalidade de estimar parâmetros genéticos e fenotípicos.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Com este trabalho objetivou-se determinar parâmetros genéticos para peso corporal de perdizes em cativeiro. Foram utilizados modelos de regressão aleatória na análise dos dados considerando os efeitos genéticos aditivos diretos (AD) e de ambiente permanente de animal (AP) como aleatórios. As variâncias residuais foram modeladas utilizando-se funções de variância de ordem 5. A curva média da população foi ajustada por polinômios ortogonais de Legendre de ordem 6. Os efeitos genéticos aditivos diretos e de ambiente permanente de animal foram modelados utilizando-se polinômios de Legendre de segunda a nona ordem. Os melhores resultados foram obtidos pelos modelos de ordem 6 de ajuste para os efeitos genéticos aditivos diretos e de ordem 3 para os de ambiente permanente pelo Critério de Informação de Akaike e ordem 3 para ambos os efeitos pelos Critério de Informação Bayesiano de Schwartz e Teste de Razão de Verossimilhança. As herdabilidades estimadas variaram de 0,02 a 0,57. O primeiro autovalor respondeu por 94 e 90% da variação decorrente de efeitos aditivos diretos e de ambiente permanente, respectivamente. A seleção de perdizes para peso corporal é mais efetiva a partir de 112 dias de idade.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Clonidine, an alpha 2-adrenergic agonist, injected into the brain inhibits salt intake of animals treated by the diuretic model of sodium depletion. In the present study, we address the question of whether central injection of clonidine also inhibits salt intake in animals deprived of water or in the need-free state. Saline or clonidine (30 nmol) was injected into the anterior third ventricle of 24-h sodium-depleted (furosemide + removal of ambient sodium), of 24-h water-deprived and of normovolemic (need-free state) adult male rats, Clonidine injected intracerebroventricularly (icv) inhibited the 1.5% NaCl intake for 120 min by 50 to 90% in every model tested. Therefore, different models of salt intake are inhibited by icv injection of clonidine, Idazoxan, an alpha 2-adrenergic antagonist, injected icy at a dose of 160 nmol, inhibited the effect of clonidine only in the furosemide + removal of ambient sodium model of salt intake. This indicates that the antagonism of this effect by idazoxan is dependent on the body fluid/sodium status of the animal.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Data comprising 1,719 milk yield records from 357 females (predominantly Murrah breed), daughters of 110 sires, with births from 1974 to 2004, obtained from the Programa de Melhoramento Genetic de Bubalinos (PROMEBUL) and from records of EMBRAPA Amazonia Oriental - EAO herd, located in Belem, Para, Brazil, were used to compare random regression models for estimating variance components and predicting breeding values of the sires. The data were analyzed by different models using the Legendre's polynomial functions from second to fourth orders. The random regression models included the effects of herd-year, month of parity date of the control; regression coefficients for age of females (in order to describe the fixed part of the lactation curve) and random regression coefficients related to the direct genetic and permanent environment effects. The comparisons among the models were based on the Akaike Infromation Criterion. The random effects regression model using third order Legendre's polynomials with four classes of the environmental effect were the one that best described the additive genetic variation in milk yield. The heritability estimates varied from 0.08 to 0.40. The genetic correlation between milk yields in younger ages was close to the unit, but in older ages it was low.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Milk, fat, and protein yields of Holstein cows from the States of New York and California in the United States were used to estimate (co)variances among yields in the first three lactations, using an animal model and a derivative-free restricted maximum likelihood (REML) algorithm, and to verify if yields in different lactations are the same trait. The data were split in 20 samples, 10 from each state, with means of 5463 and 5543 cows per sample from California and New York. Mean heritability estimates for milk, fat, and protein yields for California data were, respectively, 0.34, 0.35, and 0.40 for first; 0.31, 0.33, and 0.39 for second; and 0.28, 0.31, and 0.37 for third lactations. For New York data, estimates were 0.35, 0.40, and 0.34 for first; 0.34, 0.44, and 0.38 for second; and 0.32, 0.43, and 0.38 for third lactations. Means of estimates of genetic correlations between first and second, first and third, and second and third lactations for California data were 0.86, 0.77, and 0.96 for milk; 0.89, 0.84, and 0.97 for fat; and 0.90, 0.84, and 0.97 for protein yields. Mean estimates for New York data were 0.87, 0.81, and 0.97 for milk; 0.91, 0.86, and 0.98 for fat; and 0.88, 0.82, and 0.98 for protein yields. Environmental correlations varied from 0.30 to 0.50 and were larger between second and third lactations. Phenotypic correlations were similar for both states and varied from 0.52 to 0.66 for milk, fat and protein yields. These estimates are consistent with previous estimates obtained with animal models. Yields in different lactations are not statistically the same trait but for selection programs such yields can be modelled as the same trait because of the high genetic correlations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this study the trait Stayability (SA) was evaluated according to the year of cull after first calvin, i.e., SA 1 to 6 for 1 to 6 years from first calving in lactating females from bubaline milk herds spread in nine farms located in São Paulo state. Informations were used regarding 1027 lactating Murrah breed buffaloes. The statistical analyses were made using LIFEREG (SAS, 1999) procedure. The SA was evaluated using the fixed effects: farm production, birth year, calving season (Season 1- April to September and Season 2 October - March) and class of milk yield at 270 days. The age at first calving (AFC) was considered as a random effect. The mean observed for total milk yield was 1458.75Kg. Calving Season 2 encloses 65.6% of births. The means of cull age, in months, and the percentage of SA were, respectively: 10.69 e 69% (SA1), 19.30 e 63% (SA2), 26.4 e 54% (SA3), 33.15 e 42% (SA4), 38.53 e 36% (SA5) e 42.65 e 26% (SA6). It is verified that most of culls happens after the first lactation, among the sixth and eleventh month after first calving. It was observed that the factors: farm production, birth year and class of milk yield at 270 days affected significantly all SAs. Factors like calving season and the age at first calving (AFC) were only significant for SAL Being significant the factor AFC in level of 1% and factor time in 10%. For other SAs these factors were not statistically significant.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The buffaloes dairy milk production (BDMP) has increased in the last 20 years, mainly for the manufacturing of mozzarella cheese, which is recognized by its high nutritional quality. However, this quality can be affected by several factors i. e. high somatic cells count (SCC) provokes changes in the milk's constituents. As in bovine dairy milk, the SCC is used as diagnostic tool for milk quality; because it enables the diagnosis of sub-clinic mastitis and also allows the selection of individuals genetically resistant to that disease. Based on it, we collected information about SCC and BDMP along the lactation in Murrah breed buffaloes, during the period between 1997 and 2005. Curves were designed to estimate genetic parameters. These parameters were estimated by ordinary test-day models. There were observed variations in the estimated heritability for both characteristics the lowest score for somatic cells count (SSCC) was seen at first month (0.01) and the highest at sixth months (0.29 the genetic correlation between these traits varied from -1 at the 1 and 9(th) months to 0.31 and 0.30 in the2 and 4(th) month of lactation. Phenotypic correlations were all negative (-0.07 in the second month and up to -0.35 in the eighth month of lactation). These results showed that environmental factors are more important than genetics in explain SCC, for this reason, selection for genetic resistance to mastitis in buffalos based in SCC should not be done. In the other hand, negative phenotypic correlations demonstrated that as the SCC increased, the milk production decreased.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The objectives of this study were to estimate genetic parameters for test-day milk, fat and protein yields, in Murrah buffaloes. In this study 4,757 complete lactations of Murrah buffaloes were analyzed. The (co) variance components were estimated by restricted maximum likelihood using MTDFREML software. The bi-trait animal test-day models included genetic additive direct and permanent environment effects, as random effects, and the fixed effects of contemporary group (herds-year-month of control) and age of the cow at calving as linear and quadratic covariable. The heritability estimate at first control was 0.19, increased until the third control (0.24), decreasing thereafter, reaching the lowest value at the ninth control (0.09). The highest heritability estimates for fat and protein yield were 0.23 (first control) and 0.33 (third control), respectively. For milk yield, genetic and phenotypic correlation estimates ranged from 0.37 to 0.99 and from 0.52 to 0.94, respectively. Genetic correlations were higher than phenotypic ones. For fat and protein yields, genetic correlation estimates ranged from 0.42 to 0.97.