131 resultados para FTIR and thermal analysis


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Solid state chelates of general formula H-2[M(EDTA)] . nH2O, where M is Co, Ni, Cu or Zn, and EDTA is ethylenediaminetetraacetate, were prepared. Thermogravimetry-derivative thermogravimetry (TG-DTG), differential thermal analysis (DTA) and complexometry were used to characterize and to study the thermal stability and thermal decomposition of these compounds.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Solid state Ln-4-Me-BP compounds, where Ln stands for heavier trivalent lanthanides (gadolinium to lutetium) and yttrium(III) and 4-Me-BP is 4-methylbenzylidenepyruvate (CH3-C6H4-CH=CH-COCOO-), have been synthesized. Elemental analysis, complexometry, X-ray powder diffractometry, infrared spectroscopy and simultaneous thermogravimetry-differential thermal analysis (TG-DTA), have been used to characterise and to study the thermal behaviour of these compounds. The results provided information concerning the stoichiometry, crystallinity, ligand's denticity, thermal stability and thermal decomposition. © 2002 Elsevier Science B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Solid-state LnL(3) compounds, where L is 2-metboxybenzoate and Ln is light trivalent lanthanides, have been synthesized. Thermogravimetry (TG), differential scanning calorimetty (DSC), X-ray powder diffractometry, infrared spectroscopy and elementary analysis were used to characterize and to study the thermal behaviour of these compounds. The results led to information on the composition, dehydration, thermal stability and thermal decomposition of the isolated compounds. on heating these complexes decompose in three (Ce, Pr) or five (La, Nd, Sm) steps with the formation of the respective oxide: CeO2, Pr6O11 and Ln(2)O(3) (Ln=La, Nd, Sm) as final residues. The theoretical and experimental spectroscopic study suggests predominantly the ionic bond between the ligand and metallic center.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Solid state chelates of general formula H[Ln(EDTA)] · nH2O (Ln = trivalent lanthanide (except for promethium) or yttrium; EDTA = ethylenediaminetetraacetate) were prepared. Thermogravimetry, differential thermal analysis. X-ray diffraction and complexometry were used to characterize and study the thermal stability and thermal decomposition of these compounds. © 1993.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Four new heterobimetallic metal carbonyls were synthesized by the reaction of [W(CO)4(bipy)] (1) with copper(I) compounds leading to species with the general formula [W(CO)4(bipy)(CuX)] (X = Cl, N3, ClO4, BF4) (2-5). The metal carbonyl compounds were characterized by elemental analysis, infrared and UV -visible electronic spectroscopy and thermogravimetric analysis. The IR data for 2-5 show carbonyl stretching band patterns similar to compound 1 ; ie they exhibit the same number of bands. The UV - vis results show a dissociation reaction generating the starting compound 1 and CuX as consequence of a weak interaction between 1 and CuX. Thermal decomposition mechanisms as well as the thermal stability are influenced by the CuX fragments. The thermal stability decreases in the order [W(CO)4(bipy)] > [W(CO)4(bipy)(CuCl)] > [W(CO)4(bipy) (CuBF4)]. The X-ray results show the formation of WO3, CuWO4, Cu2O and CuO as final decomposition products.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The dimeric compound [Pd(dmba)(μ-Cl)]2 (1) (dmba = N,N-dimethylbenzylamine) reacts with KX, in methanol/acetone, affording the analogous dimeric pseudohalide-bridged species [Pd(dmba)(X)]2 [X = NCO(2), SCN(3), CN(4)]. The compounds were characterized by elemental analysis, infrared spectroscopy, NMR and thermogravimetric analysis. The IR data for 2-4 showed bands typical of coordinated pseudohalide ligands indicating clearly the occurrence of the exchange reaction. Their thermal behavior was investigated and suggested that their thermal stability is influenced by the bridging ligand. The thermal stability decreased in the order [Pd(dmba)(μ-SCN)]2>[Pd(dmba)(μ-Cl)] 2>[Pd(dmba)(;u-NCO)]2>[Pd(dmba)(μ-CN)]2. The X-ray results showed the formation of PdO as final decomposition product. © 1999 Elsevier Science Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Solid M-DMBP compounds, where M represents Mg(II), Ca(II), Sr(II), Ba(II), Ni(II), Cu(II), Zn(II), Fe(III), La(III), Th(IV), and DMBP is 4-dimethylaminobenzylidenepyruvate, have been prepared. Thermogravimetry-derivative thermogravimetry (TG-DTG), differential scanning calorimetry (DSC) and other methods of analysis have been used to characterize and to study the thermal stability and thermal decomposition of these compounds. © 1995.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Solid-state M-2-MeO-BP compounds, where M represents bivalent Mn, Fe, Co, Ni, Cu, Zn and 2-MeO-BP is 2-methoxybenzylidenepyruvate have been synthesized. Simultaneous thermogravinietry-differential thermal analysis (TG-DTA), differential scanning calorimetry (DSC), X-ray powder diffractometry, infrared spectroscopy, elemental analysis and complexometry were used to characterize and to study the thermal stability and thermal decomposition of these compounds. The results led to information about the composition, dehydration, crystallinity and thermal decomposition of the isolated compounds.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Solid state Ln-DMBP compounds, where Ln represents trivalent lanthanides (except for promethium) and yttrium, and DMBP is 4-dimethylaminobenzylidenepyruvate, were prepared. Thermogravimetry (TG), differential thermal analysis (DTA), and other methods of analysis were used to characterize and to study the thermal stability and thermal decomposition of these compounds. © 1993.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper describes the importance of an innovative analytical technique for drugs and pharmaceuticals quantification, using Fouriertransform infrared (FTIR) transmission spectroscopy. This method does not use organic solvents, which is one great advantage over the most common analytical methods. This fact contributes to minimize the generation of organic solvent waste by the industry and thereby reduces the impact of its activities on the environment. The method involved absorbance measurements of the band corresponding to one of the chosen group in the molecule. Obviously, the method should be validated according to ICH guidelines, showing linearity, precision, accuracy and robustness, over a concentration range, using small amounts to prepare the analyte. The validated method is able to quantify drugs and pharmaceuticals and can be used as an environmentally friendly alternative for the routine analysis in pharmaceutical industry quality control.