275 resultados para Electrochemistry impedance spectroscopy


Relevância:

80.00% 80.00%

Publicador:

Resumo:

dThe detection of aromatic compounds from pesticides and industrial wastewater has become of great interest, since these compounds withstand chemical oxidation and biological degradation, accumulating in the environment. In this work, a highly sensitive biosensor for detecting catechol was obtained with the immobilization of Cl-catechol 1,2-dioxygenase (CCD) in nanostructured films. CCD layers were alternated with poly(amidoamine) generation 4 (PAMAM G4) dendrimer using the electrostatic layer-by-layer (LbL) technique. Circular dichroism (CD) measurements indicated that the immobilized CCD preserved the same conformation as in solution. The thickness of the very first CCD layers in the LbL films was estimated at ca. 3.6 nm, as revealed by surface plasmon resonance (SPR). PAMAM/CCD 10-bilayer films were employed in detecting diluted catechol solutions using either an optical or electrical approach. Due to the mild immobilization conditions employed, especially regarding the pH and ionic strength of the dipping solutions, CCD remained active in the films for periods longer than 3 weeks. The optical detection comprised absorption experiments in which the formation of cis-cis muconic acid, resulting from the reaction between CCD and catechol, was monitored by measuring the absorbance at 260 nm after film immersion in catechol solutions. The electrical detection was carried out using LbL films deposited onto gold-interdigitated electrodes immersed in aqueous solutions at different catechol concentrations. Using impedance spectroscopy in a broad frequency range (1Hz-1kHz), we could detect catechol in solutions at concentrations as low as 10(-10) M. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The effect of lithium salt doping on the structure and ionic conduction properties of silica-polyethyleneglycol composites is reported. These materials, so called ormolytes (organically modified electrolytes), were obtained by the sol-gel process. They have chemical stability due to the covalent bonds between the inorganic (silica) and organic (polymer) phase. The structure of these hybrid materials was investigated by small-angle X-ray scattering (SAXS) as a function of lithium concentration [O]/[Li] (O being the oxygens of the ether type). The spectra have a well-defined peak attributed to the existence of a liquid-like spatial correlation of silica clusters. The ionic conductivity was studied by AC impedance spectroscopy and is maximum for [O]/[Li] = 15. This result is consistent with SAXS and thermo-mechanical analysis measurements and is due to the formation of cross-linking between the polymer chains for the larger lithium concentrations. These materials are solid, transparent, flexible and have an ionic conductivity up to 10(-4) S/cm. (C) 1999 Elsevier B.V. B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Ultra-fine powders of Na1-xLixNbO3 (x=0; 0.06; 0.09; 0.12) were synthesized by the Polymeric Precursors Method. Such powders had their orthorhombic structures determined by X-ray diffraction and their surface area determined by BET isotherms (less than 10 m(2) g(-1)). Densification was followed by dilatometric study. The powders, calcined at 700 degrees C for 5 h, were sintered at 1290 degrees C during 2 h under ambient atmosphere with no application of extra pressure. The samples with relative densities higher than 95% were analyzed by impedance spectroscopy at room temperature, under a signal amplitude of 1 V-rms. Dielectric constants of about 180 and dielectric loss factor of about 0.03 were measured showing small dependence with frequency. The electrical properties were similar to those obtained for samples sintered by hot pressing. (C) 1999 Elsevier B.V. Limited and Techna S.r.l. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We report the preparation and characterization of yttria-stabilized zirconia/nickel oxide composites (YSZ/NiO). This composite is the precursor material of the cermet YSZ/Ni, which is used as solid oxide fuel cell anode material. The performance of the anode is strongly dependent on the microstructural properties of the cermet. Therefore, the control of the microstructure of the YSZ/NiO composite is a key step for the fabrication of high-performance anodes. In this study, the composites were prepared by a modified liquid mixture technique. Scanning electron microscopy analysis evidenced the good dispersion of the phases and that NiO nanoparticles are spread over the YSZ surface. Sintered pellets were studied by X-ray diffraction and impedance spectroscopy. The main results show that the composite is comprised of a well-dispersed mixture of the two phases. The electrical conductivity data show that there is a strong dependence of the transport mechanism on the relative composition of phases. (c) 2005 Elsevier Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Reactive pure and manganese-doped (5% and 10 at.%) ceria nanosized powders were prepared by the polymeric precursor technique. Physical properties of powder materials were studied by X-ray diffraction, nitrogen adsorption, and diffuse reflectance infrared Fourier transform spectroscopy. Characterization of powder compacts after fast firing at 1200 degrees C for 5 min was carried out by scanning electron microscopy and impedance spectroscopy measurements. The bulk apparent density of sintered pellets was determined for pellets of different compositions sintered at 1200 degrees C. A gradual decrease of the particle size occurs with increasing doping content. Relatively high values of apparent density were obtained after fast firing doped specimens at 1200 degrees C. DRIFT spectra evidence that a fraction of Mn ions was segregated onto particles surface. The electrical resistivity of sintered pellets reveals different mechanisms of conduction depending on the Mn content. (C) 2005 Elsevier B.V All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The alternating conductivity, sigma*(f) = sigma'(f) + i sigma ''(f), of in situ polymerized polyaniline thin films doped with hydrochloric acid, deposited on top of an interdigitated gold line array previously deposited on glass substrates, were measured in the frequency (f) range between 0.1 Hz to 10 MHz and in the temperature range from 100 to 430 K. The results for sigma'(f) are typical of a disordered solid material: for frequencies lower than a certain hopping frequency gamma(hop), log[sigma'(f)] is frequency-independent rising almost linearly for in logf > gamma(hop). A master curve was thus obtained by plotting the real component of the conductivity using normalized scales sigma'(f)/sigma(dc) and f/gamma(hop) which is indicative of a single process operating in the whole frequency range. An expression encompassing the conduction through a disordered structure taken from previous random free energy barrier model for hopping carriers, as well a dielectric function to represent the capacitive behavior of the PAni was employed to fit the experimental results. The dielectric constant and activation energy for hopping carriers were obtained as function of the polymer doping level. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Bi1.5ZnSb1.5O7 dielectric ceramic with pyrochlore structure was investigated by impedance spectroscopy from 400 to 750 degreesC. Pyrochlore was synthesized by the polymeric precursor method, a chemical synthesis route derived from Pechini's method. The grain or bulk resistance exhibits a sensor temperature characteristic, being a thermistor with a negative temperature coefficient (NTC). Only a single region was identified on the resistance curve investigated. The NTC thermistor characteristic parameter (beta) is equal to 7140 degreesC, in the temperature range investigated. The temperature coefficient of the resistance (alpha) was derived, being equal to -4.46x10(-2) degreesC(-1) at 400 degreesC. The conduction mechanism and relaxation are discussed. (C) 2003 American Institute of Physics.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fractal dimensions of grain boundary region in doped SnO2 ceramics were determined based on previously derived fractal model. This model considers fractal dimension as a measure of homogeneity of distribution of charge carriers. Application of the derived fractal model enables calculation of fractal dimension using results of impedance spectroscopy. The model was verified by experimentally determined temperature dependence of the fractal dimension of SnO2 ceramics. Obtained results confirm that the non-Debye response of the grain boundary region is connected with distribution of defects and consequently with a homogeneity of a distribution of the charge carriers. Also, it was found that C-T-1 function has maximum at temperature at which the change in dominant type of defects takes place. This effect could be considered as a third-order transition.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The electric and dielectric properties of the grain boundary of Na0.85Li0.15NbO3 lead-free ferroelectric-semiconductor perovskite were investigated. The impedance spectroscopy was carried out as a function of a thermal cycle. The sodium lithium niobate was synthesized by a chemical route based on the evaporation method. Dense ceramic, relative density of 97%, was prepared at 1423 K for 2 h in air atmosphere. ac measurements were carried out in the frequency range of 5 Hz-13 MHz and from 673 to 1023 K. Theoretical adjust of the impedance data was performed to deriving the electric parameters of the grain boundary. The electric conductivity follows the Arrhenius law, with activation energy values equal to 1.55 and 1.54 eV for heating and cooling cycle, respectively. The nonferroelectric state of the grain boundary and its correlation with symmetry are discussed in the temperature domain. (C) 2003 American Institute of Physics.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Metallographic studies carried out for Tytin-Plus and Dispersalloy amalgams show a porous multiphase material, whose surface phases are: gamma-(Ag3Sn), gamma(1)-(Ag2Hg3), eta'-(Cu6Sn5) and epsilon-(Cu3Sn). Additionally, Dispersalloy is present in the Ag-Cu eutectic. The application of surface analysis by SEM reveal a heterogeneous distribution of the above mentioned phases. Microstructures consisting of colonies or clusters were not observed. The corrosion testing of these materials was done in 0.9% NaCl aerated solution at 25 degrees C using potentiodynamic polarization curves and ac impedance measurements. The corrosion process in these multiphase systems can be interpreted as the sum of more than one electrodissolution process and the posterior formation of corrosion films. on each electrode, the corrosion film is formed by different mechanisms. (C) 1998 Elsevier B.V. B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The electrochemical behavior of Cu-xAl alloys, with 11 wt%less than or equal to x less than or equal to 15wt%, in 0.5 M H2SO4 was studied by means of open-circuit potential decay measurements, quasi-stationary and fast cyclic voltammetry, and electrochemical impedance spectroscopy. Some of the alloys (x less than or equal to 14%), when quenched formed martensitic structures. Alloys with greater than or equal to 13% showed a little square-shaped phase when quenched from temperatures around 800 degrees C. It was observed that in sulfuric medium, these formations were dealuminized differently than the martensitic phase. The values of the rest potentials are more influenced by the heat treatment rather than by the alloy composition. An anodic Tafel slope of ca. 60 mV/decade was observed for all the alloys, independently of the heat treatment. This is explained in terms of a competition between two processes: copper oxidation and copper(I) deproportionation. In the cyclic voltammetric experiments it was observed an anodic current peak, related with copper oxidation with a possible formation of some interfacial species, and a cathodic current peak during the reverse potential scan, associated with the reduction of soluble species and/or of the film. The AC Impedance data were interpreted in terms of electric equivalent circuits.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Calcium copper titanate (CaCu3Ti4O12) ceramic varistors were prepared by solid-state method. The samples were several times heat treated in vacuum and the evolution of electrical characteristics were monitored by current density versus electric field measurements and impedance spectroscopy. Repeated heat treatments in vacuum (900 degrees C for 1 h, 0.01 Torr) lead to a desorption of oxygen adsorbed at the grain boundaries and consequently to a degradation of the varistor properties. During further successive heat treatments some oxygen from the grain interior moves to the grain boundary thereby partially restoring the varistor properties. (c) 2006 Elsevier Ltd and Techna Group S.r.l. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Gelation mechanisms of lithium-doped Siloxane-Poly(oxyethylene) (PEO) hybrids containing polymer of two different molecular weight (500 and 1900 g/mol) were investigated through the evolution of the electrical properties during the solgel transition. The results of electrical measurements, performed by in-situ complex impedance spectroscopy, were correlated with the coordination and the dynamical properties of the lithium ions during the process as shown by Li-7 NMR measurements. For both hybrids sols, a decrease of the conductivity is observed at the initial gelation stage, due to the existence of an inverted percolation process consisting of the progressive separation of solvent molecules containing conducting species in isolated islands during the solid network formation. An increase of conductivity occurs at more advanced stages of gelation and aging, attributed to the increasing connectivity between PEO chains promoted by the formation of crosslinks of siloxane particles at their extremities, favoring hopping motions of lithium ions along the chains.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Hydrogen evolution reaction was studied on Ni-Zn (25% of Ni before leaching) in 1 M NaOH at 25 degrees C. These electrodes were characterized by very low Tafel slopes of 67 mV dec(-1). Other techniques used included potential and current pulse, potential relaxation in an open circuit, and ac impedance spectroscopy. Analysis of the experimental results led to the conclusion that hydrogen adsorption in the surface layers was responsible for the observed behavior. Influence of the oxidation of the electrode surface and the addition of poisons, thiourea and cyanides, were also studied. These processes inhibit the hydrogen absorption and restore ''normal'' Tafel slopes. Kinetic parameters of the hydrogen evolution reaction were determined.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper discusses some advances in research conducted on SnO2-based electroceramics. The addition of different dopants, as well as several thermal treatments in oxidizing and inert atmospheres, were found to influence the microstructure and electrical properties of SnO2-based varistor ceramics. Measurements taken by impedance spectroscopy revealed variations in the height and width of the potential barrier resulting from the atmosphere in which thermal treatments were performed. High nonlinear coefficient values, which are characteristic of high-voltage and commercial ZnO varistors, were obtained for these SnO2-based systems. All the systems developed here have potentially promising varistor applications. (C) 2004 Elsevier B.V. All rights reserved.