303 resultados para CHROMOSOME NUMBERS
Resumo:
We present the first radiation hybrid (RH) map of river buffalo (Bubalus bubalis) chromosome 6 (BBU6) developed with a recently constructed river buffalo whole-genome RH panel (BBURH5000). The preliminary map contains 33 cattle-derived markers, including 12 microsatellites, 19 coding genes and two ESTs, distributed across two linkage groups. Retention frequencies for markers ranged from 14.4% to 40.0%. Most of the marker orders within the linkage groups on BBU6 were consistent with the cattle genome sequence and RH maps. This preliminary RH map is the starting point for comparing gene order between river buffalo and cattle, presenting an opportunity for the examination of micro-rearrangements of these chromosomes. Also, resources for positional candidate cloning in river buffalo are enhanced.
Resumo:
The Y chromosomes are genetically degenerate and do not recombine with their matching partners X. Non-recombination of XY pairs has been pointed out as the key factor for the degeneration of the Y chromosome. The aim here is to show that there is a mathematical asymmetry in sex chromosomes which leads to the degeneration of Y chromosomes even in the absence of XX and XY recombination. A model for sex-chromosome evolution in a stationary regime is proposed. The consequences of their asymmetry are analyzed and lead us to a couple of conclusions. First, Y chromosome degeneration shows up v 2 more often than X chromosome degeneration. Second, if nature prohibits female mortalities from beeing exactly 50%, then Y chromosome degeneration is inevitable.
Resumo:
In this paper, we explicitly construct an infinite number of Hopfions (static, soliton solutions with nonzero Hopf topological charges) within the recently proposed (3 + 1)-dimensional, integrable, and relativistically invariant field theory. Two integers label the family of Hopfions we have found. Their product is equal to the Hopf charge which provides a lower bound to the soliton's finite energy. The Hopfions are explicitly constructed in terms of the toroidal coordinates and shown to have a form of linked closed vortices.
Resumo:
The Y chromosomes are genetically degenerated and do not recombine with their matching partners X. Recombination of XX pairs is pointed out as the key factor for the Y chromosome degeneration. However, there is an additional evolutionary force driving sex-chromosomes evolution. Here we show this mechanism by means of two different evolutionary models, in which sex chromosomes with non-recombining XX and XY pairs of chromosomes is considered. Our results show three curious effects. First, we observed that even when both XX and XY pairs of chromosomes do not recombine, the Y chromosomes still degenerate. Second, the accumulation of mutations on Y chromosomes followed a completely different pattern then those accumulated on X chromosomes. and third, the models may differ with respect to sexual proportion. These findings suggest that a more primeval mechanism rules the evolution of Y chromosomes due exclusively to the sex-chromosomes asymmetry itself, i.e., the fact that Y chromosomes never experience female bodies. Over aeons, natural selection favored X chromosomes spontaneously, even if at the very beginning of evolution, both XX and XY pairs of chromosomes did not recombine.
Resumo:
São descritos o cariótipo e a localização das regiões organizadoras de nucléolo (Ag-NOR) de uma amostra de Trichomycterus diabolus, coletada no córrego Hortelã (Botucatu, São Paulo, Brasil). A espécie apresentou 2n=56 cromossomos (42 metacêntricos, 12 submetacêntricos e 2 subtelocêntricos) e as regiões organizadoras de nucléolo localizadas próximas ao centrômero, no braço longo do maior par metacêntrico. A ocorrência de 2n=56 cromossomos em Trichomycterus diabolus é uma característica interessante, uma vez que, até o momento, todas as espécies cis-Andinas cariotipadas apresentaram 2n=54 cromossomos, enquanto que quase todas as espécies trans-Andinas apresentaram números diplóides diferentes. É discutida a possível origem desta inesperada estrutura cariotípica.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Karyotypes of six species of the genus Stevia from Southern Brazil were studied, utilizing root tip metaphases. All species were diploid with 2n = 22 chromosomes. It was possible to identify each species by chromosome morphology. The basic chromosome number for Brazilian species of Stevia is X = 11. This number is also found in almost all South American species. We suggest that in Stevia there is an evolutionary trend toward chromosomal rearrangement, caused mainly by pericentric inversions. It was found that, in addition to aneuploidy and polyploidy, chromosomal rearrangements are common in the tribe Eupatorieae.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)