178 resultados para Bose Einstein condensate
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The Gross-Pitaevskii equation for Bose-Einstein condensation (BEC) in two space dimensions under the action of a harmonic oscillator trap potential for bosonic atoms with attractive and repulsive interparticle interactions was numerically studied by using time-dependent and time-independent approaches. In both cases, numerical difficulty appeared for large nonlinearity. Nonetheless, the solution of the time-dependent approach exhibited intrinsic oscillation with time iteration which is independent of space and time steps used in discretization.
Resumo:
A study was conducted on the interaction of two pulses in the nonlinear Schrodinger (NLS) model. The presence of different scenarios of the behavior depending on the initial parameters of the pulses, such as the pulse areas, the relative phase shift, the spatial and frequency separations were shown. It was observed that a pure real initial condition of the NLS equation can result in additional moving solitons.
Resumo:
The existence of a dispersion-managed soliton in two-dimensional nonlinear Schrodinger equation with periodically varying dispersion has been explored. The averaged equations for the soliton width and chirp are obtained which successfully describe the long time evolution of the soliton. The slow dynamics of the soliton around the fixed points for the width and chirp are investigated and the corresponding frequencies are calculated. Analytical predictions are confirmed by direct partial differential equation (PDE) and ordinary differential equation (ODE) simulations. Application to a Bose-Einstein condensate in optical lattice is discussed. The existence of a dispersion-managed matter-wave soliton in such system is shown.
Resumo:
The dynamics of dissipative and coherent N-body systems, such as a Bose-Einstein condensate, which can be described by an extended Gross-Pitaevskii formalism, is investigated. In order to analyze chaotic and unstable regimes, two approaches are considered: a metric one, based on calculations of Lyapunov exponents, and an algorithmic one, based on the Lempel-Ziv criterion. The consistency of both approaches is established, with the Lempel-Ziv algorithmic found as an efficient complementary approach to the metric one for the fast characterization of dynamical behaviors obtained from finite sequences. © 2013 Elsevier B.V. All rights reserved.
Resumo:
Pós-graduação em Física - FEG
Resumo:
We contrast four distinct versions of the BCS-Bose statistical crossover theory according to the form assumed for the electron-number equation that accompanies the BCS gap equation. The four versions correspond to explicitly accounting for two-hole-(2h) as well as two-electron-(2e) Cooper pairs (CPs), or both in equal proportions, or only either kind. This follows from a recent generalization of the Bose-Einstein condensation (GBEC) statistical theory that includes not boson-boson interactions but rather 2e- and also (without loss of generality) 2h-CPs interacting with unpaired electrons and holes in a single-band model that is easily converted into a two-band model. The GBEC theory is essentially an extension of the Friedberg-Lee 1989 BEC theory of superconductors that excludes 2h-CPs. It can thus recover, when the numbers of 2h- and 2e-CPs in both BE-condensed and non-condensed states are separately equal, the BCS gap equation for all temperatures and couplings as well as the zero-temperature BCS (rigorous-upper-bound) condensation energy for all couplings. But ignoring either 2h- or 2e-CPs it can do neither. In particular, only half the BCS condensation energy is obtained in the two crossover versions ignoring either kind of CPs. We show how critical temperatures T-c from the original BCS-Bose crossover theory in 2D require unphysically large couplings for the Cooper/BCS model interaction to differ significantly from the T(c)s of ordinary BCS theory (where the number equation is substituted by the assumption that the chemical potential equals the Fermi energy). (c) 2007 Published by Elsevier B.V.
Resumo:
We reinvestigate the dynamics of the grow and collapse of Bose-Einstein condensates in a system of trapped ultracold atoms with negative scattering lengths, and found a new behavior in the long time scale evolution: the number of atoms can go far beyond the static stability limit. The condensed state is described by the solution of the time-dependent nonlinear Schrödinger equation, in a model that includes atomic feeding and three-body dissipation. Our results for the model show that, by changing the feeding parameter and when a substantial depletion of the ground-state exists, a chaotic behavior is found. We consider a criterion proposed by Deissler and Kaneko [Phys. Lett. A 119, 397 (1987)] to diagnose spatiotemporal chaos. ©2000 The American Physical Society.
Resumo:
We suggest the possibility of observing and studying bright vortex solitons in attractive Bose-Einstein condensates in three dimensions with a radial trap. Such systems lie on the verge of critical stability and we discuss the conditions of their stability. We study the interaction between two such solitons. Unlike the text-book solitons in one dimension, the interaction between two radially trapped and axially free three-dimensional solitons is inelastic in nature and involves exchange of particles and deformation in shape. The interaction remains repulsive for all phase δ between them except for δ ≈ 0.
Resumo:
Dynamics and stability of solitons in two-dimensional (2D) Bose-Einstein condensates (BEC), with one-dimensional (1D) conservative plus dissipative nonlinear optical lattices, are investigated. In the case of focusing media (with attractive atomic systems), the collapse of the wave packet is arrested by the dissipative periodic nonlinearity. The adiabatic variation of the background scattering length leads to metastable matter-wave solitons. When the atom feeding mechanism is used, a dissipative soliton can exist in focusing 2D media with 1D periodic nonlinearity. In the defocusing media (repulsive BEC case) with harmonic trap in one direction and nonlinear optical lattice in the other direction, the stable soliton can exist. Variational approach simulations are confirmed by full numerical results for the 2D Gross-Pitaevskii equation.