157 resultados para Benzyl penicillin
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Streptococcus mutans, the predominant bacterial species associated with dental caries, can enter the bloodstream and cause infective endocarditis. The aim of this study was to investigate S. mutans biofilm formation and adherence to endothelial cells induced by human fibrinogen. The putative mechanism by which biofilm formation is induced as well as the impact of fibrinogen on S. mutans resistance to penicillin was also evaluated. Bovine plasma dose dependently induced biofilm formation by S. mutans. Of the various plasma proteins tested, only fibrinogen promoted the formation of biofilm in a dose-dependent manner. Scanning electron microscopy observations revealed the presence of complex aggregates of bacterial cells firmly attached to the polystyrene support. S. mutans in biofilms induced by the presence of fibrinogen was markedly resistant to the bactericidal effect of penicillin. Fibrinogen also significantly increased the adherence of S. mutans to endothelial cells. Neither S. mutans cells nor culture supernatants converted fibrinogen into fibrin. However, fibrinogen is specifically bound to the cell surface of S. mutans and may act as a bridging molecule to mediate biofilm formation. In conclusion, our study identified a new mechanism promoting S. mutans biofilm formation and adherence to endothelial cells which may contribute to infective endocarditis.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The flash photolysis (lambda = 266 nm) of four alpha -brominated omicron -xylenes in apolar solvents gives two transients characterized, depending on parent compound substitution, as either monoradicals or carbenes, and quinodimethanes. alpha -Bromomethylbenzyl radical is characterized and the novel species alpha,alpha'-dibromo-omicron -xylylene and omicron-(alpha,alpha -dibromomethyl)benzyl carbene are described for the first time. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
Background: Most clinical cases of osteomyelitis in dogs involve infectious agents, especially bacteria and fungi. The characterization of these microorganisms may aid in the prevention and treatment of disease.Objective: The aim of this study was to evaluate retrospectively microbiological cultures and in vitro antimicrobial susceptibility profile of isolates from 52 cases of bacterial osteomyelitis in long bones of dogs over 2000-2013. In 78% of the cases injuries were caused by a motor vehicle accident, but there were a few cases of dog bites (17%) and ascending infection due to pododermatitis (5%).Animals and methods: The isolated microorganisms were identified based on conventional phenotypic methods. In vitro disk diffusion test was performed using 30 different antimicrobials.Results: The isolates were obtained from femur (28%), humerus (16%), tibia (31%), and radius/ulna (25%). Among 52 cases, culture was positive in 88% of cases. Thirteen genus of different species of microorganisms were isolated. The most common microorganisms isolated were Staphylococcus spp. and Escherichia coli followed by Streptococcus spp., enteric bacteria, Corynebacterium sp. and anaerobic bacteria. In 42% of cases cultures were mixed. The most effective drugs against isolated bacteria were amoxicillin and clavulanate potassium (79%) followed by ceftriaxone (69%). High-resistance rates were documented against azithromycin (80%), penicillin (59%), and clindamycin (59%).Conclusions: The present study highlights diverse etiologic agents in cases of infectious bacterial osteomyelitis, with predominance of Staphylococcus genus, and reinforces the importance of obtaining cultures and susceptibility profiles given the high rates of antimicrobial resistance.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Violacein is a deeply violet pigment produced by Chromobacterium violaceum, an ubique tropical and subtropical bacterium. This molecule presents many biological activities including antimicrobial, antimycotic, antiviral, antiprotozoal and antitumoral. Important reports pointed to a considerable bactericide activity, which brings an extremely necessary quest. This work evaluated the resistance of some bacterias of interest veterinary. It was obtained significant inhibition activity against Staphylococcus aureus came from bovine mastitis. It was also obtained important synergic relations when violacein and penicillin or cloranphenicol are combined
Resumo:
The catalytic function of extended-spectrum β-lactamases can result in high degrees of bacterial resistance to β-lactamic antimicrobials and in the emergence of ESBL among the members of Enterobacteriaceae family, especially Klebsiella pneumoniae and Escherichia coli. This occurs due to the dissemination and emergence of new variants of these enzymes caused by the high utilization of antibiotics like broad-spectrum cephalosporins. The ESBL are β-lactamases capable of conferring bacterial resistance to the penicillins, 1st, 2nd and 3rd generation cephalosporins, and aztreonam (but not cephamycins and carbapenems) through the hydrolysis of these antibiotics. In view of this phenomenon, the exact screening and detection of the producers of ESBL are essential for the appropriate selection of the antimicrobial therapy. The purposes of this study were to evaluate the best antimicrobial for the selection of ESBL producers and to determine the best method for the detection of such microorganisms. We evaluated 200 sequential bacterial samples including the species Klebsiella pneumoniae (56.5%), Escherichia coli (34%), Proteus mirabilis (8.5%) and Klebsiella oxytoca (1%), previously characterized as ESBL producers between February and September 2008 in the Laboratory of Microbiology, Botucatu Medical School - UNESP, Botucatu, São Paulo State, Brazil. To select the ESBL-producer bacteria, we used the disks recommended by CLSI 2008, aztreonam (ATM), cefpodoxime (CPD), ceftriaxone (CRO), cefotaxime (CTX) and ceftazidime (CAZ), besides cefepime (FEP). ESBL production was confirmed by three methods: double disk screening, ESBL Etest®, and Vitek® automated system. The disks employed in the double disk screening were: penicillin associated with β-lactamase inhibitor, amoxicillin-clavulanic acid, and two β-lactamic antibiotics, ceftazidime and cefotaxime...(Complete abstract click electronic access below)