327 resultados para ATOMIC FORCE MISCROSCOPY


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Lithium tantalate thin films (LiTaO3) with (50:50) stoichiometry were prepared by spin coating method using a polymeric organic solution. The films were deposited on silicon (100) substrates with 4 layers. The substrates were previously cleaned and then the solution of lithium tantalate was deposited by adjusting the speed at 5000 rpm. The thin films deposited were thermally treated from 350 to 600degreesC for 3 hours in order to study the influence of the thermal treatment temperature on the crystallinity, microstructure, grain size and roughness of the final film. X-ray diffraction (XRD) results showed that the films are polycrystalline and secondary phases free. The thickness of films was observed by scanning electron microscopy (SEM). The atomic force microscopy (AFM) studies showed that the grain size and roughness are strongly influenced by thermal treatment.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

It is shown that the adsorption and morphological properties of layer-by-layer films of poly(o-methoxyaniline) (POMA) alternated with poly(vinyl sulfonic acid) (PVS) are affected dramatically by different treatments of the POMA solutions employed to prepare the films. Whereas the dimension of the globular structures seen by atomic force microscopy increases non monotonically during film growth in parent POMA solution, owing to a competition of adsorption/desorption processes, it changes monotonically for the fractionated POMA. The roughness of the latter films depends on the concentration of the solution and saturates at a given size of the scan window. This allowed us to apply scaling laws that indicated a self-affine mechanism for adsorption of the treated POMA.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

High-quality ABO(3)/LaNiO3 (A = Ph, Ca, Ba; B = Ti, Zr) hetero structures have been grown on LaAlO3 (1 0 0) substrate by the chemical solution deposition method and crystallized by a microwave oven technique. The structural, morphological and electric properties were characterized by means of X-ray diffraction (XRD), atomic force microscope (AFM), and dielectric and ferroelectric measurements. XRD patterns revealed single-phase polycrystalline and oriented thin films whose feature depends on the composition of the films. The AFM surface morphologies showed a smooth and crack-free surface with the average grain size ranging from 116 to 300 nm for both LaNiO3 electrode and the ferroelectric films. Dielectric measurements on these samples revealed dielectric constants as high as 1800 at frequency of 100 KHz. Such results showed that the combination of the chemical solution method with the microwave process provides a promising technique to grow high-quality thin films with good dielectric and ferroelectric properties. (c) 2005 Elsevier Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We report on the use of dynamic scale theory and fractal analyses in the Study of distinct growth stages of layer-by-layer (LBL) films of poly(allylamine hydrochloride) (PAH) and a side-chain-substituted azobenzene copolymer (Ma-co-DR13). The LBL films were adsorbed oil glass substrates and characterized with atomic force microscopy with the Ma-co-DR13 at the top layer. The ganular morphology exhibited by the films allowed the observation of the growth process inside and outside the grains. The growth outside the grains was found to follow the Kardar-Parisi-Zhang model, with fractal dimensions of ca. 2.6. One could expect that inside the grains the morphology would be close to a Euclidian surface with fractal dimension of ca. 2 for any growth stage. The latter, however, was observed only for thicker films containing more than 10 bilayers. For thinner films the morphology was well described by a self-affine fractal. Such dependence of the growth behavior with the film thickness is associated with a more complete coverage of adsorption sites in thicker films due to diffusion of polymer molecules. (c) 2004 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The crystal structure, surface morphology and electrical properties of layered perovskite calcium bismuth niobate thin films (CaBi2Nb2O9-CBN) deposited on platinum coated silicon substrates by the polymeric precursor method have been investigated. The films were crystallized in a domestic microwave and in a conventional furnace. X-ray diffraction and atomic force microscopy analysis confirms that the crystallinity and morphology of the films are affected by the different annealing routes. Ferroelectric properties of the films were determined with remanent polarization P-r and a drive voltage V-c of 4.2 mu C/cm(2) and 1.7 V for the film annealed in the conventional furnace and 1.0 mu C/cm(2) and 4.0 V for the film annealed in microwave furnace, respectively. A slight decay after 10(8) polarization cycles was observed for the films annealed in the microwave furnace indicating a reduction of the domain wall mobility after interaction of the microwave energy with the bottom electrode. (C) 2006 Elsevier Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this work we investigate the effect from the solution concentration on aggregation in layer-by-layer (LBL) films of poly(omethoxyaniline) (POMA) alternated with poly(vinyl sulfonic acid). Films are adsorbed on hydrophilized glass substrates and characterized with UV-Vis spectroscopy and atomic force microscopy. The formation of aggregates is favored in more concentrated solutions, leading to an increase in the diameter of the domains. This is caused by stronger polymer-polymer interactions under high concentrations. The size of POMA aggregates in solution is estimated to be larger than in LBL films, which is surprising because one should expect aggregates from solution to coalesce into larger aggregates in the deposited films. This unexpected result may be explained by a swelling effect of aggregates in the aqueous POMA solutions, consistent with other reports in the literature which consider the aggregates in solution to be made up of smaller aggregates. Upon adsorption on a solid substrate to form the LBL film, a molecular reorganization probably takes place, resulting in smaller aggregates. It is also found that the size distribution of the POMA domains in the LBL films is determined by the concentration of the solution. (C) 2002 Elsevier B.V. B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The BBT films were prepared by a spin-coating process from the polymeric precursor method (Pechini process). In order to study the influence of the temperature on the BBT microstructure and electrical properties, the films were deposited on platinum coated silicon substrates and annealed from 700degreesC to 800degreesC for 2 hours in oxygen atmosphere. The crystallinity of the films was examined by X-ray diffraction while the surface morphology was analysed by atomic force microscope. The dielectric properties and dissipation factor of BaBi2Ta2O9 films at 1 MHz were observed. The polarization-electric field hysteresis loops revealed the ferroelectric characteristics of BaBi2Ta2O9 thin films.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Lithium tantalate (LiTaO3) thin films with 50:50 stoichiometry were deposited on silicon (100) substrates with two layers by the spin coating method using a polymeric organic solution. In order to study the influence of preannealing on the crystallinity, microstructure, grain size and roughness of the final film, two annealing procedures, slow preannealing and fast preannealing, were used. X-ray diffraction (XRD) results showed that LiTaO3 thin films are polycrystalline. It was observed by scanning electron microscopy (SEM) that the thin film, which had been thermally treated using slow preannealing, was characterized by a dense and homogeneous surface. The atomic force microscopy (AFM) studies showed that the roughness is strongly influenced by preannealing temperature. (C) 2003 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Lithium tantalate (LiTaO3) thin films with (50:50) stoichiometry were prepared using polymeric organic solution. The 5-layered films were deposited on silicon (100) substrates by spin coating method. The coated substrates were thermally treated at 500degreesC for 3 h under several oxygen atmospheres in order to study the influence of oxygen flow on the crystallinity, microstructure, grain size and roughness of the final film. X-ray diffraction results showed that an oxygen flow of 100 cm(3)/min leads to LiTaO3 thin films with higher crystallinity, without preferential orientation. It was observed by scanning electron microscopy (SEM) that the thickness of thin films decreases when the oxygen flow increases. The atomic force microscopy (AFM) studies showed that the grain size and roughness are strongly influenced by oxygen flow.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This work presents the synthesis of the complex [Fe(L)(2)](PF6)(2) (.) H2O (L = 2,6-bis[1-(3-pyrrol-1-yl-propylimino)ethyl]pyridine (Fig. 1) and its characterization through elemental and thermal analysis, X-ray diffraction and UV-Vis, IR and H-1 NMR spectra. The use of this compound in the preparation of modified electrodes is also described. The best electrochemical parameters to achieve optimum film formation have been established and the effects of both the upper-limit of the applied scanning potential (E-aul) and the number of scans on the efficiency of film formation have been investigated. Film surface morphology has been characterized by atomic force microscopy. (C) 2004 Elsevier Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Barium titanate thin films were prepared by the polymeric precursor method and deposited onto Pt/Ti/SiO2/Si substrates. X-ray diffraction (XRD), scanning electron microscopy (SEM) and atomic force microscopy (AFM), Fourier transform infrared spectroscopy (FT-IR) and micro-Raman spectroscopy were used to investigate the formation of the BaTiO3 perovskite phase. Afterwards, the films were submitted to post-annealing treatments in oxygen and nitrogen atmospheres at 300 degreesC for 2 h, and had their dielectric properties measured. It was observed that the electric properties of the thin films are very sensitive to the nature of the post-annealing atmosphere. This study demonstrates that post-annealing in an oxygen atmosphere increases the dielectric relaxation phenomenon and that post-annealing in a nitrogen atmosphere produces a slight dielectric relaxation. (C) 2004 Elsevier B.V All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Ferroelectric PbTiO3 thin films were successfully prepared on a Pt(111)Ti/SiO2/Si(100) substrate for the first time by spin coating, using the polymeric precursor method. X-ray diffraction patterns of the films indicate that they are polycrystalline in nature. This method allows low temperature (500 degrees C) synthesis and high electrical properties. The multilayer PbTiO3 thin films were granular in structure with a grain size of approximately 110-120 nm. A 380-nm-thick film was obtained by carrying out four cycles of the spin-coating/heating process. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) analyses showed the surface of these thin films to be smooth, dense and crack-free with low surface roughness (=3.4 nm). At room temperature and at a frequency of 100 kHz, the dielectric constant and the dissipation factor were, respectively, 570 and 0.016. The C-V characteristics of perovskite thin film prepared at low temperature show normal ferrolectric behavior. The remanent polarization and coercive field for the films deposited were 13.62 mu C/cm(2) and 121.43 kV/cm, respectively. The high electrical property values are attributed to the excellent microstrutural quality and chemical homogeneity of thin films obtained by the polymeric precursor method. (C) 2000 Elsevier B.V. S.A. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Photoexpansion and photobleaching effects have been examined in glass compositions Ga10Ge25S65 and Ga5Ge25As5S65. Such compositions are promising for optical storage and planar waveguide applications. To evaluate the photoinduced effect, samples were exposed to 351 nm light, varying power density (3-10 W/cm(2)) and exposure time (0-120 min). The exposed areas have been analyzed using atomic force microscopy (AFM) and an expansion of 800 nm is observed for composition Ga10Ge25S65 exposed during 120 min and 5 W/cm(2) power density. The optical absorption edge measured by a spectrophotometer indicates a blue shift (80 nm) after illumination in the composition Ga10Ge25S65. The morphology was examined using a scanning electron microscopy (SEM). The chemical compositions measured using a energy dispersive analyzer (EDX) indicate an increase of the number of sulfur atoms in the irradiated area. (C) 2001 Elsevier B.V. B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Electrical conductive textured LaNiO3/SrTiO3 (100) thin films were successfully produced by the polymeric precursor method. A comparison between features of these films of LaNiO3 (LNO) when heat treated in a conventional furnace (CF) and in a domestic microwave (MW) oven is presented. The x-ray diffraction data indicated good crystallinity and a structural orientation along the (h00) direction for both films. The surface images obtained by atomic force microscopy revealed similar roughness values, whereas films LNO-MW present slightly smaller average grain size (similar to 80 nm) than those observed for LNO-CF (60-150 nm). These grain size values were in good agreement with those evaluated from the x-ray data. The transport properties have been studied by temperature dependence of the electrical resistivity rho(T) which revealed for both films a metallic behavior in the entire temperature range studied. The behavior of rho(T) was investigated, allowing to a discussion of the transport mechanisms in these films. (C) 2007 American Institute of Physics.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Strontium-modified lead titanate (PST) thin films with composition Pb1-xSrxTiO3 (0.10 < x &LE; 0.60) were grown on Pt/Ti/SiO2/Si substrates using a soft chemical process. The crystallization of the PST thin films was achieved by heat treatment at 600&DEG;C. The structural and microstructural modifications in the films were studied using X-ray diffraction (XRD) and atomic force microscopy, respectively. The XRD study shows that the lattice parameters of polycrystalline PST thin films calculated from X-ray data indicate a decrease in lattice tetragonality with the increase in strontium content in these films. This indicates a gradual change from tetragonal to cubic structure. By atomic force microscopy analysis, the average grain size of the thin films was systematically reduced with the increase in Sr content. The dielectric property of the thin films was found to be strongly dependent on the Sr concentration. With 60 at.% Sr content, a ferroelectric to paraelectric phase transition was observed at room temperature.