132 resultados para 27Al solid state MAS NMR
Resumo:
Solid M-DMBP compounds, where M represents Mg(II), Ca(II), Sr(II), Ba(II), Ni(II), Cu(II), Zn(II), Fe(III), La(III), Th(IV), and DMBP is 4-dimethylaminobenzylidenepyruvate, have been prepared. Thermogravimetry-derivative thermogravimetry (TG-DTG), differential scanning calorimetry (DSC) and other methods of analysis have been used to characterize and to study the thermal stability and thermal decomposition of these compounds. © 1995.
Resumo:
Solid-state M-2-MeO-BP compounds, where M represents bivalent Mn, Fe, Co, Ni, Cu, Zn and 2-MeO-BP is 2-methoxybenzylidenepyruvate have been synthesized. Simultaneous thermogravinietry-differential thermal analysis (TG-DTA), differential scanning calorimetry (DSC), X-ray powder diffractometry, infrared spectroscopy, elemental analysis and complexometry were used to characterize and to study the thermal stability and thermal decomposition of these compounds. The results led to information about the composition, dehydration, crystallinity and thermal decomposition of the isolated compounds.
Resumo:
Solid state Ln-DMBP compounds, where Ln represents trivalent lanthanides (except for promethium) and yttrium, and DMBP is 4-dimethylaminobenzylidenepyruvate, were prepared. Thermogravimetry (TG), differential thermal analysis (DTA), and other methods of analysis were used to characterize and to study the thermal stability and thermal decomposition of these compounds. © 1993.
Resumo:
A thermotolerant strain of Rhizopus oryzae was grown in three agro-industrial by-products: brewers’ rice, corn grits and wheat bran. Different substrates, cultivation time, moisture content, additional nitrogen sources, pH and temperature of incubation were evaluated aiming to optimize growing conditions. The highest enzymatic activity was observed after 24 h of cultivation using wheat bran as substrate with the following salt solutions: NH4NO3, MgSO4.7H2O and (NH4)2SO4 0.1% at temperature of 35°C. It was observed that changes in the pH range 4.0-6.0 did not significantly affect α-amylase activity. The optimum operation conditions were 75°C and pH 4.5. The enzymes remained stable at 75°C in the absence of substrate for 25 min.
Resumo:
In waterlogged environments of the upper Amazon basin, organic matter is a major driver in the podzolisation of clay-depleted laterites, especially through its ability to weather clay minerals and chelate metals. Its structure in eight organic-rich samples collected at the margin and in the centre of the podzolic area of a soil sequence was investigated. The samples illustrate the main steps in the development of waterlogged podzols and belong either to eluviated topsoil A horizons or to illuviated subsoil Bhs, Bh and 2BCs horizons. Organic matter micromorphology was described, and the overall molecular structure of their clay size fractions was assessed using Fourier transform infrared (FTIR) spectroscopy and cross polarization/magic angle spinning (CP/MAS) C-13 nuclear magnetic resonance (NMR). Organic features of the horizons strongly vary both vertically and laterally in the sequence. Topsoil A horizons are dominated by organic residues juxtaposed to clean sands with a major aliphatic contribution. In the subsoil, numerous coatings, characteristic of illuviation processes, are observed in the following horizons: (i) At the margin and bottom parts of the podzolic area, dark brown organic compounds of low aromacity with abundant oxygen-containing groups accumulate in Bhs and 2BCs horizons. Their spectroscopic features agree with the observation of cracked coatings in 2BCs and the presence of organometallic complexes, whose abundance decreases towards low lying positions. (ii) By contrast, black organic compounds of high aromacity with few chelating functions accumulate as coatings and infills in the overlying sandy Bh horizon of well-expressed waterlogged podzols. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Electrical conductivity and H-1 Nuclear Magnetic Resonance (NMR) techniques were used to investigate the ion-exchanged layered lead-niobate perovskite HPb2Nb3O10. nH(2)O, over the temperature range 90-350 K. Compounds were synthesized by the sol-gel method and calcinated at 650 degreesC. Analysis of the NMR data gives activation energies for the proton motion in the range 0.14-0.40 eV, which are dependent on the water content. The frequency and temperature dependencies of the proton spin-lattice relaxation times show that the character of the motion of the: water molecules is essentially two-dimensional, reflecting the layered structure of the material. The H-1 line-narrowing transition and the single spin-lattice relaxation rate maximum, observed in the hydrated compounds, are consistent with a Grotthuss-like mechanism for the proton diffusion. (C) 2000 Elsevier B.V. B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The importance of soil organic matter functions is well known, but structural information, chemical composition and changes induced by anthropogenic factors such as tillage practices are still being researched. In the present paper were characterized Brazilian humic acids (HAs) from an Oxisol under different treatments: conventional tillage/maize-bare fallow (CT1); conventional tillage/maize rotation with soybean-bare fallow (CT2)-, no-till/maize-bare fallow (NT1); no-till/maize rotation with soybean-bare fallow (NT2); no-till/maize-cajanus (NT3) and no cultivated soil under natural vegetation (NC). Soil HA samples were analyzed by electron paramagnetic resonance (EPR), solid-state C-13 nuclear magnetic resonance (C-13 NMR), Fourier transform intra-red (FTIR) and UV-Vis fluorescence spectroscopies and elemental analysis (CHNS). The FTIR spectra of the HAs were similar for all treatments. The level of semiquinone-type free radical determined from the EPR spectra was lower for treatments no-till/maize-cajanus (NT3) and noncultivated soil (1.74 X 10(17) and 1.02 x 10(17) spins g(-1) HA, respectively), compared with 2.3 X 10(17) spins g(-1) HA for other soils under cultivation. The percentage of aromatic carbons determined by C-13 NMR also decreases for noncultivated soil to 24%, being around 30% for samples of the other treatments. The solid-state C-13 NMR and EPR spectroscopies showed small differences in chemical composition of the HA from soils where incorporation of vegetal residues was higher, showing that organic matter (OM) formed in this cases is less aromatic. The fluorescence intensities were in agreement with the percentage of aromatic carbons, determined by NMR (r = 0.97 P < 0.01) and with semiquinone content, determined by EPR (r = 0.97 P < 0.01). No important effect due to tillage system was observed in these areas after 5 years of cultivation. Probably, the studied Oxisol has a high clay content that offers protection to the clay-Fe-OM complex against strong structural alterations. (C) 2003 Elsevier B.V. All rights reserved.
NMR study of ion-conducting organic-inorganic nanocomposites poly(ethylene glycol) - Silica - LiClO4
Resumo:
Hybrid organic-inorganic ionic conductors, also called ormolytes, were obtained by dissolution of LiClO4 into silica/poly(ethylene glycol) matrices. Solid-state nuclear magnetic resonance (NMR) was used to probe the inorganic phase structure (Si-29) and the effects of the temperature and composition on the dynamic behavior of the ionic species (Li-7) and the polymer chains (H-1 and C-13). The NMR results between -100 and +90 degrees C show a strong correlation with ionic conductivity and differential scanning calorimetry experiments. The results also demonstrate that the cation mobility is assisted by segmental motion of the polymer, which is in agreement with the results previously reported for pure poly(ethylene oxide), PEG, electrolytes.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)