164 resultados para TITANIUM SILICALITE


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this study was to assess the influence of a fluoridated medium on the mechanical properties of an internal hexagon implant-abutment set, by means of compression, mechanical cycling and metallographic characterization by scanning electronic microscopy. Five years of regular use of oral hygiene with a sodium fluoride solution content of 1500 ppm were simulated, immersing the samples in this medium for 184 hours, with the solutions being changed every 12 hours. Data were analyzed at a 95% confidence level with Fisher's exact test. After the action of fluoride ions, a negative influence occurred in the mechanical cycling test performed in a servohydraulic machine (Material Test System-810) set to a frequency of 15 Hz with 100,000 cycles and programmed to 60% of the maximum resistance of static compression test. The sets tended to fracture by compression on the screw, characterized by mixed ruptures with predominance of fragile fracture, as observed by microscopy. An evidence of corrosion by pitting on sample surfaces was found after the fluoride ions action. It may be concluded that prolonged contact with fluoride ions is harmful to the mechanical properties of commercially pure titanium structures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pure and scandium doped-TiO2 thin films were prepared by the sol-gel process and coated by dip coating. The effects of scandium on the phase formation, optical properties and photoactivity of the TiO2 thin films were investigated. The lattice parameters and the crystallinity of the anatase phase, characterized by the Rietveld method, demonstrated that scandium doping affected the structural parameters and crystallinity of the films, modifying the absorption edge. A direct correlation was found between band gap energy and photodegradation efficiency, with lower values of band gap energy augmenting this efficiency. Moreover, a significant improvement in the catalyst's photodegradation efficiency was attained with a scandium concentration of 5.0 mol%. © 2007 Springer Science+Business Media, LLC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objectives: The aim of this study was to evaluate the effect of thermal and mechanical cycling alone or in combination, on the flexural strength of ceramic and metallic frameworks cast in gold alloy or titanium. Methods: Metallic frameworks (25 mm × 3 mm × 0.5 mm) (N = 96) cast in gold alloy or commercial pure titanium (Ti cp) were obtained using acrylic templates. They were airborne particle-abraded with 150 μm aluminum oxide at the central area of the frameworks (8 mm × 3 mm). Bonding agent and opaque were applied on the particle-abraded surfaces and the corresponding ceramic for each metal was fired onto them. The thickness of the ceramic layer was standardized by positioning the frameworks in a metallic template (height: 1 mm). The specimens from each ceramic-metal combination (N = 96, n = 12 per group) were randomly assigned into four experimental fatigue conditions, namely water storage at 37 °C for 24 h (control group), thermal cycling (3000 cycles, between 4 and 55 °C, dwell time: 10 s), mechanical cycling (20,000 cycles under 10 N load, immersion in distilled water at 37 °C) and, thermal and mechanical cycling. A flexural strength test was performed in a universal testing machine (crosshead speed: 1.5 mm/min). Data were statistically analyzed using two-way ANOVA and Tukey's test (α = 0.05). Results: The mean flexural strength values for the ceramic-gold alloy combination (55 ± 7.2 MPa) were significantly higher than those of the ceramic-Ti cp combination (32 ± 6.7 MPa) regardless of the fatigue conditions performed (p < 0.05). Mechanical and thermo-mechanical fatigue decreased the flexural strength results significantly for both ceramic-gold alloy (52 ± 6.6 and 53 ± 5.6 MPa, respectively) and ceramic-Ti cp combinations (29 ± 6.8 and 29 ± 6.8 MPa, respectively) compared to the control group (58 ± 7.8 and 39 ± 5.1 MPa, for gold and Ti cp, respectively) (p < 0.05) (Tukey's test). While ceramic-Ti cp combinations failed adhesively at the metal-opaque interface, gold alloy frameworks exhibited a residue of ceramic material on the surface in all experimental groups. Significance: Mechanical and thermo-mechanical fatigue conditions decreased the flexural strength values for both ceramic-gold alloy and ceramic-Ti cp combinations with the results being significantly lower for the latter in all experimental conditions. © 2007 Academy of Dental Materials.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Porous titanium scaffolds are promising materials for biomedical applications such as prosthetic anchors, fillers and bone reconstruction. This study evaluated the bone/titanium interface of scaffolds with interconnected pores prepared by powder metallurgy, using scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS). Porous scaffolds and dense samples were implanted in the tibia of rabbits, which were subsequently killed 1, 4, and 8 weeks after surgery. Initial bone neoformation was observed one week after implantation. Bone ingrowth in pores and the Ca/P ratio at the interface were remarkably enhanced at 4 and 8 weeks. The results showed that the interconnected pores of the titanium scaffolds promoted bone ingrowth, which increased over time. The powder metallurgy technique thus proved effective in producing porous scaffolds and dense titanium for biomedical applications, allowing for adequate control of pore size and porosity and promoting bone ingrowth.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The osseointegration of porous titanium implants was evaluated in the present work. Implants were fabricated from ASTM grade 2 titanium by a powder metallurgy method. Part of these implants were submitted to chemical and thermal treatment in order to deposit a biomimetic coating, aiming to evaluate its influence on the osseointegration of the implants. The implants were characterized by Scanning Electron Microscopy (SEM), Electron Dispersive X-Ray Spectroscopy (EDS) and Raman Spectroscopy. Three coated and three control (uncoated) implants were surgically inserted into thirty albino rabbits' left and right tibiae, respectively. Tibiae samples were submitted to histological and histomorphometric analyses, utilizing SEM, optical microscopy and mechanical tests. EDS results indicated calcium (Ca) and phosphorous (P) at the surface and Raman spectra exhibited an intense peak, characteristic of hydroxyapatite (HA). Bone neoformation was detected at the bone-implant interface and inside the pores, including the central ones. The mean bone neoformation percentage in the coated implants was statistically higher at 15 days, compared to 30 and 45 days. The mechanical tests showed that coated implants presented higher resistance to displacement, especially after 30 and 45 days.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study examined by means of scanning electron microscopy (SEM), the attachment of Streptococcus mutans and the corrosion of cast commercially pure titanium, used in dental dentures. The sample discs were cast in commercially pure titanium using the vacuum-pressure machine (Rematitan System). The surfaces of each metal were ground and polished with sandpaper (#300-4000) and alumina paste (0.3 μm). The roughness of the surface (Ra) was measured using the Surfcorder rugosimeter SE 1700. Four coupons were inserted separately into Falcon tubes contained Mueller Hinton broth inoculated with S. mutans ATCC 25175 (109 cuf) and incubated at 37 °C. The culture medium was changed every three days during a 365-day period, after which the falcons were prepared for observations by SEM. The mean Ra value of CP Ti was 0.1527 μm. After S. mutans biofilm removal, pits of corrosion were observed. Despite the low roughness, S. mutans attachment and biofilm formation was observed, which induced a surface corrosion of the cast pure titanium.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The purpose of the present study was to evaluate, using a biomechanical test, the force needed to remove implants with surface modification by laser (Nd:YAG) in comparison with implants with machined surfaces. Twenty-four rabbits received one implant with each surface treatment in the tibia, machined surface (MS) and laser-modified surface (LMS). After 4, 8 and 12 weeks of healing, the removal torque was measured by a torque gauge. The surfaces studied were analyzed according to their topography, chemical composition and roughness. The average removal torque in each period was 23.28, 24.0 and 33.85 Ncm for MS, and 33.0, 39.87 and 54.57 Ncm for LMS, respectively. The difference between the surfaces in all periods of evaluation was statistically significant (p < 0.05). Surface characterization showed that a deep and regular topography was provided by the laser conditioning, with a great quantity of oxygen ions when compared to the MS. The surface micro-topography analysis showed a statistical difference (p < 0.01) between the roughness of the LMS (R a = 1.38 ± 0.23 μm) when compared to that of the MS (R a = 0.33 ± 0.06 μm). Based on these results, it was possible to conclude that the LMS implants' physical-chemical properties increased bone-implant interaction when compared to the MS implants. © 2009 Sociedade Brasileira de Pesquisa Odontológica.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aims of this study were to characterize the microstructure of a commercially pure titanium (cpTi) surface etched with HCl/H 2SO 4 (AE-cpTi) and to investigate its in vitro cytocompatibility compared to turned cpTi (T-cpTi). T-cpTi showed a grooved surface and AE-cpTi revealed a surface characterized by the presence of micropits. Surface parameters indicated that the AE-cpTi surface is more isotropic and present a greater area compared to T-cpTi. The oxide film thickness was similar between both surfaces; however, AE-cpTi presented more Ti and O and less C. Osteoblastic cell proliferation, alkaline phosphatase activity, and bone-like nodule formation were greater on T-cpTi than on AE-cpTi. These results show that acid etching treatment produced a surface with different topographical and chemical features compared to the turned one, and such surface modification affected negatively the in vitro cytocompatibility of cpTi as demonstrated by decreasing culture growth and expression of osteoblastic phenotype.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study analyzed the reaction layer and measured the marginal crown fit of cast titanium applied to different phosphate-bonded investments, prepared under the following conditions (liquid concentration/casting temperature): Rema Exakt (RE) - 100%/237°C, 75%/287°C, Castorit Super C (CS)-100%/70°C, 75%/141°C and Rematitan Plus (RP)-100%/430°C (special to titanium cast, as the control group). The reaction layer was studied using the Vickers hardness test, and analyzed by two way ANOVA and Tukey's HSD tests (α = 0.05). Digital photographs were taken of the crowns seated on the die, the misfit was measured using an image analysis system and One-way ANOVA, and Tukey's test was applied (α = 0.05). The hardness decreased from the surface (601.17 VHN) to 150 μm (204.03 VHN). The group CS 75%/141°C presented higher hardness than the other groups, revealing higher surface contamination, but there were no differences among the groups at measurements deeper than 150 μm. The castings made with CS - 100%/70°C presented the lowest levels of marginal misfit, followed by RE -100%/237°C. The conventional investments CS (100%) and RE (100%) showed better marginal fit than RP, but the CS (75%) had higher surface contamination.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Investigation of the effectiveness of surface treatments that promote a strong bond strength of resin cements to metals can contribute significantly to the longevity of metal-ceramic restorations. This study evaluated the effect of surface treatments on the shear bond strength (SBS) of a resin cement to commercially pure titanium (CP Ti). Ninety cast CP Ti discs were divided into 3 groups (n=30), which received one of the following airborne-particle abrasion conditions: (1) 50 μm Al2O3 particles; (2) 30 μm silica-modified Al2O3 particles (Cojet Sand); (3) 110 μm silica-modified Al2O3 particles (Rocatec). For each airborne-particle abrasion condition, the following post-airborne-particle abrasion treatments were used (n=10): (1) none; (2) adhesive Adper Single Bond 2; (3) silane RelyX Ceramic Primer. RelyX ARC resin cement was bonded to CP Ti surfaces. All specimens were thermally cycled before being tested in shear mode. Failure mode was determined. The best association was Rocatec plus silane. All groups showed 100% adhesive failure. There were combinations that promote higher SBS than the protocol recommended by the manufacturer of RelyX ARC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A porous material for bone ingrowth with adequate pore structure and appropriate mechanical properties has long been sought as the ideal bone-implant interface. This study aimed to assess in vivo the influence of three types of porous titanium implant on the new bone ingrowth. The implants were produced by means of a powder metallurgy technique with different porosities and pore sizes: Group 1 = 30% and 180 μm; Group 2 = 30% and 300 μm; and Group 3 = 40% and 180 μm. Six rabbits received one implant of each type in the right and left tibiae and were sacrificed 8 weeks after surgery for histological and histomor-phometric analyses. Histological analysis confirmed new bone in contact with the implant, formed in direction of pores. Histomorphometric evaluation demonstrated that the new bone formation was statistically significantly lower in the group G1 than in group G3, (P = 0.023). Based on these results, increased porosity and pore size were concluded to have a positive effect on the amount of bone ingrowth.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aim: There is little information considering the framework association between cast clasps and attachments. The aim of this study was to evaluate the retention strength of frameworks match circumferential clasps and extra resilient attachment cast in three different alloys (cobalt-chromium, nickel-chromium titanium and commercially pure titanium), using two undercut (0.25 and 0.75 mm) and considering different period of time (0, 1/2, 1, 2, 3, 4 and 5 years). Methods: Using two metallic matrices, representing a partially edentulous mandibular right hemiarch with the first molar crown, canine root and without premolars, 60 frameworks were fabricated. Three groups (n = 20) of each metal were cast and each group was divided into two subgroups (n = 10), corresponding the molar undercut of 0.25 mm and 0.75 mm. The nylon male was positioned at the matrix and attached to the acrylic resin of the prosthetic base. The samples were subjected to an insertion and removal test under artificial saliva environment. Results: The data were analyzed and compared with ANOVAs and Tukey's test at 95% of probability. The groups cast in cobaltchromium and nickel-chromium-titanium had the highest mean retention strength (5.58 N and 6.36 N respectively) without significant difference between them, but statistically different from the group cast in commercially pure titanium, which had the lowest mean retention strength in all the periods (3.46 N). The association frameworks using nickel-chromium-titanium and cobalt-chromium could be used with 0.25 mm and 0.75 mm of undercut, but the titanium samples seems to decrease the retention strength, mainly in the 0.75 mm undercut. The circumferential clasps cast in commercially pure titanium used in 0.75 mm undercuts have a potential risk of fractures, especially after the 2nd year of use. Conclusion: This in vitro study showed that the framework association between cast clasp and an extra resilient attachment are suitable to the three metals evaluated, but strongly suggest extra care with commercially pure titanium in undercut of 0.75 mm. Clinical significance: Frameworks fabricated in Cp Ti tend to decrease in retentive strength over time and have a potential risk of fracture in less than 0.75 mm of undercut.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aim: Cyclosporine A (CsA) is an immunosuppressive agent commonly used to prevent organ transplantation rejection. It has been demonstrated that CsA may negatively affect osseointegration around dental implants. Therefore, the aim of this study was to evaluate the effect of CsA administration on bone density around titanium dental implants. Materials and Methods: Fourteen New Zealand rabbits were randomly divided into 2 groups with seven animals each. The test group (CsA) received daily subcutaneous injection of CsA (10mg/kg body weight) and the control group (CTL) received saline solution by the same route of administration. Three days after the beginning of immunosuppressive therapy, one machined dental implant (7.00 mm in lenght and 3.75 mm in diameter) was inserted bilaterally at the region of the tibial methaphysis. After 4 and 8 weeks the animals were sacrificed and the histometrical procedures were performed to analyse the bone density around the first four threads of the coronal part of the implant. Results: A significant increase in the bone density was observed from the 4- to the 8 week-period in the control group (37.41% + 14.85 versus 58.23% + 16.38 - p <0.01). In contrast, bone density consistently decreased in the test group overtime (46.31% + 17.38 versus 16.28 + 5.08 - p <0.05). In the 8-week period, there was a significant difference in bone density between the control and the test groups (58.23 + 16.38 eand16.28 + 5.08 - p= 0.001). Conclusion: Within the limits of this study, long-term CsA administration may reduce bone density around titanium dental implants during the osseointegration process.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aim To assess the dimensional characteristics, flexibility and torsional behaviour of nickel-titanium retreatment instruments. Methodology Using image analysis software and high-resolution digital images, the instrument length, tip angle, diameter at 3mm from the tip and the distance between the blades (pitch length) of the following eight instruments were measured (n=12 for each measurement parameter): the ProTaper Universal retreatment (PTU-R) D1, D2 and D3 instruments; the R-Endo R1, R2 and R3 retreatment instruments; and the Mtwo retreatment (Mtwo-R) sizes 25 and 15 retreatment instruments. Maximum torque and the angular deflection at fracture as well as the bending moment at 45° were measured (n=12) according to the International Standards Organisation (ISO) specification number 3630-1. Data were analysed using the analysis of variance (α=0.05). Results The length of the active part of the instruments was found to vary according to the depth of the canal into which they were designed to reach. The pitch length also increased along the active length. The PTU-R D1 and the Mtwo-R instruments had active tips. Measurements of the bending moment at 45° revealed that the Mtwo-R 15 instrument was the most flexible, whereas the PTU-R D1 was the least flexible. The maximum torque tended to increase as the instrument diameter at 3mm from the tip increased, whereas the angular deflection at fracture varied in the opposite direction. Conclusions The geometrical characteristics of the retreatment instruments and their flexibility and torsion behaviour were consistent with their intended clinical application. © 2011 International Endodontic Journal.